Преобразователи постоянного напряжения. Простые автогенераторные преобразователи напряжения на транзисторах Простейшие двухтактные преобразователи на двух транзисторах

Преобразователи постоянного напряжения. Простые автогенераторные преобразователи напряжения на транзисторах Простейшие двухтактные преобразователи на двух транзисторах

Двухтактный преобразователь

Двухтактный преобразователь - преобразователь напряжения, использующий импульсный трансформатор . Коэффициент трансформации трансформатора может быть произвольным. Несмотря на то, что он фиксирован, во многих случаях может варьироваться ширина импульса, что расширяет доступный диапазон стабилизации напряжения. Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности .

Двухтактный преобразователь похож на обратноходовый преобразователь , однако основан на другом принципе (энергия в сердечнике трансформатора не запасается).

Однофазный двухтактный преобразователь представляет собой двухтактный полномостовой генератор с трансформатором и выпрямитель с фильтром .

Принцип действия

Термин «двухтактный» иногда используется для описания любого преобразователя с двунаправленным возбуждением трансформатора. Например, в полномостовом преобразователе ключи, соединённые в Н-мост , изменяют полярность напряжения, подаваемого на первичную обмотку трансформатора. При этом трансформатор работает так, как будто он подключен к источнику переменного тока и производит напряжение на вторичной обмотке. Однако, чаще всего имеют в виду полумостовой преобразователь, нагруженный на первичную обмотку с отводом от середины.

В любом случае, напряжение вторичной обмотки затем выпрямляется и передаётся в нагрузку. На выходе источника питания часто включается конденсатор , фильтрующий шумы, неизбежно возникающие из-за работы источника в импульсном режиме.

На практике необходимо оставлять маленький свободный интервал между полупериодами. Ключами обычно является пара транзисторов (или подобных элементов), и если оба транзистора откроются одновременно, возникает риск короткого замыкания источника питания. Следовательно, необходима небольшая задержка, чтобы избежать этой проблемы.

Преимущества и недостатки

Транзисторы


Wikimedia Foundation . 2010 .

Смотреть что такое "Двухтактный преобразователь" в других словарях:

    - (Push–pull output) с использованием PNP и NPN биполярных транзисторов включенных как эмиттерные повторители Двухтактный выход схемотехническое решение электронного устройства, которое позволя … Википедия

    Двухтактный выход (en:push pull output) является видом электронной цепи, которая может пропускать через нагрузку и положительный и отрицательный ток. Двухтактные выходы присутствуют в ТТЛ и КМОП цифровых логических схемах и в некоторых видах… … Википедия

    Эквивалентная схема обратноходового преобразователя Обратноходовой преобразователь (англ. flyback converter) разновидность статических импульсных … Википедия

    Импульсный стабилизатор напряжения это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… … Википедия

    Инверторы напряжения инвертором напряжения (по зарубежной терминологии DC/AC converter) называют устройство, преобразующие электрическую энергию источника напряжения постоянного тока в электрическую энергию переменного тока. Инверторы… … Википедия

    Структура Н моста (показано красным) H мост это электронная схема, которая дает возможность приложить напряжение к нагрузке в разных направлениях. Эта схема очень часто используется в робототехнике и игрушечных машинах, чтобы изменять… … Википедия - Электронный усилитель усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное … Википедия

Пожалуй одна из самых простых схем преобразователей напряжения из себя представляет простой двухтактный преобразователь на полевых транзисторах, которые включены по схеме мультивибратора. Стабилитроны из схемы можно исключить, если конечно схема предназначена для питания от напряжения не более 12 вольт. Резисторы в схеме не критичны их номинал может быть в районах от 220 ом до 1 килоома, они ограничивают ток затвора полевых транзисторов, следовательно подбором их номинала можно регулировать частоту преобразователя. Резисторы желательно применить с мощностью 0,5-1 ватт, возможен перегрев этих резисторов, но это не страшно.

Работа двухтактного преобразователя достаточно проста, транзисторы поочередно открываясь и закрываясь создают в первичной обмотке трансформатора переменное напряжение высокой частоты. Трансформатор мотается на желтом ферритовом кольце из компьютерного блока питания, хотя можно использовать и кольца марки 2000НМ.

Для питания ЛДС трансформатор в первичной обмотке содержит 6 витков с отводом от середины, провод 0,6-1 мм, вторичная обмотка содержит 90 витков и растянута по всему кольцу, провод 0,2-0,4 мм, изоляции можно не ставить, если для первички применить многожильный провод в резиновой изоляции.

Преобразователь способен развивать мощность до 20 ватт при использовании полевых транзисторов серии IRFЗ44 и до 30 ватт если применить транзисторы типа IRF3205. Область применения такого рода двухтактных преобразователей достаточно широка, поскольку преобразователь способен развивать неплохую выходную мощность и имеет очень компактные размеры, целесообразно использовать его в для зарядки конденсаторов или же для питания ЛДС в походных условиях, где нет бытовой сети 220 вольт, питать таким преобразователем активные устройства - приемники, маломощные зарядные устройства нельзя, поскольку частота преобразователя достаточно высокая.


По сути, жало паяльника закаляется из-за короткого замыкания. Вторичная обмотка содержит пол витка, напряжение прядка 1 вольта, но сила тока доходит до 15 Ампер! Именно из-за пониженного напряжения, нагрузка не столь велика, в ходе работы детали почти холодные.

Довольно мощный и простой двухтактный преобразователь напряжения можно построить с применением всего двух мощных полевых транзисторов. Такой инвертор был неоднократно мною задействован в самых разных конструкциях. В схеме применены два мощных N-канальных транзистора, их желательно брать с рабочим напряжением 100 Вольт, допустимый ток 40 Ампер и более.

Схема довольно популярна в сети.

Помимо транзисторов в схеме имеем ультрабыстрые диоды, можно задействовать диоды, типа UF4007, HER207, HER307, HER308, MUR460 и другие. Два стабилитрона на 12 Вольт для ограничения напряжения на затворах полевых ключей, стабилитроны желательно брать с мощностью 1 или 1,5 ватт, если в наличии не имеются стабилитроны на 12 Вольт, то можно использовать с напряжением стабилизации 9-15 Вольт, не критично.

Ограничительные резисторы желательно взять с мощностью 0,5 или 1 ватт, возможен небольшой перегрев этих резисторов.Трансформатор может быть намотан на сердечнике от компьютерного блока питания, можно даже ничего не мотать, и использовать трансформатор по обратному принципу — в качестве повышающего. На всякий случай скажу, что первичная или силовая обмотка состоит из 2х5 витков, намотана шиной из 5 отдельных жил по 0,7мм (каждая шина) провод не критичен.


Вторичная, повышающая обмотка намотана поверх первичной и состоит из 45 витков — этого вполне хватит для получения 220 Вольт с учетом рабочей частоты генератора.

Схема не содержит критических компонентов, разброс элементной базы довольно широкий. Транзисторы обязательно установить на теплоотвод, не забывайте разделить их от теплоотвода слюдяными прокладками, но это в случае одного цельного теплоотвода.


Дроссель может быть намотан на кольце от выходных дросселей компового БП, обмотка мотается шиной из 3-х жил провода 1 мм (каждая), количество витков от 6 до 12.

Немного о мощности и мерах безопасности. Выходное напряжение зависит от подключенной нагрузки, данный инвертор предназначен для работы с пассивными нагрузками (лампа, паяльник и т.п.) поскольку выходная частота в сотни раз больше, чем частота в сети.

Для подключения к инвертору активных нагрузок, напряжение с выхода трансформатора нужно сначала выпрямить, затем сгладить конденсатором электролитического типа, не забываем, что в выпрямителе обязательно нужно использовать быстрые диоды с обратным напряжением не менее 600 вольт и с током 2 Ампер и более. Электролитический конденсатор на напряжение 400 Вольт, емкость 47-330 мкФ. Мощность инвертора составляет 300 ватт!

Будьте предельно осторожны — выходное напряжение после выпрямителя с конденсатором смертельно опасно!

Многие радиолюбители за свою практику пытались своими руками собрать инвертор напряжения. В этой статье я расскажу о конструкции сверхпростого инвертора, который предназначен для получения сетевого напряжения 220 Вольт из автомобильного аккумулятора. Мощность такого инвертора невелика, но это один из самых простых вариантов, который может существовать.

Как указал выше, схема из себя представляет выполненный всего на двух мощных полевых ключах. Можно использовать буквально любые N-канальные полевые транзисторы с током 40 Ампер и более. Отлично подходят дешевые полевики серии IRFZ44/46/48, в целях увеличения выходной мощности можно применить более мощные полевые транзисторы серии IRF3205 - выбор огромный, я перечислил только самые ходовые транзисторы, которые можно найти почти в любом магазине радиодеталей.

Трансформатор может быть намотан на кольце или броневом сердечнике Е50, сердечник тоже не критичен, лишь бы обмотки поместились. Первичная обмотка мотается двумя жилами провода 0,8мм (каждая) и состоит из 2х15 витков. При использовании броневых сердечников с двумя секциями на каркасе, первичка мотается в одном из секций, как в моем случе. Вторичная обмотка состоит из 110-120 витков медного провода с диаметром 0,3-0,4мм. Ставить межслойные изоляции не нужно. На выходе трансформатора образуется переменное напряжение номиналом 190-260 Вольт, но форма выходных импульсов прямоугольная, вместо сетевого синуса.

Частота такого отклоняется от сетевой, поэтому подключать к преобразователю активные нагрузки довольно рискованно, хотя практика показывает, что на выход можно подключить и активные нагрузки с импульсным блоком питания.

Практическое применение двухтактного инвертора

Преобразователь без проблем может питать лампы накаливания, ЛДС, маломощные паяльники и т.п., мощность которых не превышает 70 ватт. Полевые ключи устанавливают на теплоотводы, в случае использования общего теплоотвода не забудьте использовать изолирующие прокладки.

Корпус - ваша фантазия, у меня он был взят от китайского электронного трансформатора на 150 ватт. КПД этой схемы двухтактного преобразователя может доходить до 70%. автор статьи - АКА КАСЬЯН.

Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.

Полумостовая схема построения ключевого каскада.
Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.

Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).
Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.


В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).

Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше.
Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.

Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.

Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех. Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.
Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).
Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.

Обратная связь по току или по напряжению.

Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.

В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.
Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.

В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.
Обратная связь по напряжению слабо зависит от нагрузки. Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать.
При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.

Двухтактная схема инвертора с ОС по напряжению

Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы.
Схема состоит из нескольких независимых блоков:

      • — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
      • — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
      • — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
      • — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.

Сразу после включения питания 220 вольт начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7). От него запускающие импульсы поступают на базу транзистора Т2. Происходит запуск автогенератора.
Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы.
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9 — Д12 (двухполупериодное выпрямление) и сглаживается конденсатором С5.
На выходе получается постоянное напряжение заданной величины.
Трансформатор Т1 используется для передачи импульсов обратной связи от выходного трансформатора Тр2 на базы ключевых транзисторов Т1 и Т2.


Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:

    • — ферритовый сердечник выходного трансформатора Тр2 работает с активным перемагничиванием (наиболее полно используется магнитный сердечник по мощности);
    • — напряжение коллектор – эмиттер Uэк на каждом транзисторе не превышает напряжение источника постоянного тока в 310 вольт;
    • — при изменении тока нагрузки от I = 0 до Imax, выходное напряжение изменяется незначительно;
    • — выбросы высокого напряжения в первичной обмотке трансформатора Тр2 очень малы, соответственно меньше уровень излучаемых помех.

И еще одно замечание в пользу двухтактной схемы!!

Сравним работу двухтактного и однотактного автогенераторов с одинаковой нагрузкой.
Каждый ключевой транзистор Т1 и Т2 за один такт работы генератора используется всего половину времени (одну полуволну), вторую половину такта «отдыхает». То есть вся вырабатываемая мощность генератора, делится пополам между обоими транзисторами и передача энергии в нагрузку идет непрерывно (то от одного транзистора, то от другого), во время всего такта. Транзисторы работают в щадящем режиме.
В однотактном же генераторе накопление энергии в ферритовом сердечнике происходит во время половины такта, во второй половине такта идет ее отдача в нагрузку.

Ключевой транзистор в однотактной схеме работает в четыре раза более напряженном режиме, чем ключевой транзистор в двухтактной схеме.