В чем состоит сущность резки окислением. Основные условия резки металлов окислением

В чем состоит сущность резки окислением. Основные условия резки металлов окислением

Общие сведения. Кислородная резка является одним из наиболее распространённых процессов газопламенной обработки металлов. Она широко используется в металлообработке и металлургии при резке листов, заготовок профильного проката, труб и т.д.

Различают два вида кислородной резки: разделительную и поверхностную.

При разделительной резке образуются сквозные разрезы, а при поверхностной – канавки круглого очертания.

Разделительная резка производится без и со скосом кромок под сварку, а поверхностная бывает либо сплошной, когда обрабатывается вся поверхность заготовки за один проход, либо выборочной с удалением поверхностного слоя металла.

В отличие от сварки кислородная резка на вертикальной плоскости или в потолочном положении не представляет трудностей и может производиться в любом пространственном положении.

В процессе резки металл расплавляется и вытекает из полости реза. Однако железо легко окисляется, а в чистом кислороде горит и превращается в оксиды и шлаки.

К термическому и химическому действию может присоединяться механическое действие струи газа, выталкивающее жидкие и размягчённые продукты из полости реза.

При кислородной резке происходит химическая реакция сгорания железа в кислороде.

Железо и сталь не загораются, как известно в кислороде при низких температурах, поэтому кислород хранят в стальных баллонах. Температура начала горения металла зависти от его химического состава и равна 1000-1200 о С. Температура начала горения повышается с увеличением содержания углерода в металле при одновременном понижении температуры его плавлении. Высококачественная кислородная резка металла возможна лишь в том случае, если он горит в твёрдом состоянии. Если же металл загорается лишь при расплавлении, то в процессе резки он вытекает из полости реза и рез получается широким и неравномерным.

Сущность процесса кислородной резки. Смесь кислорода с горючим газом выходит из подогревательного мундштука резака и сгорает, образуя пламя, которое называют подогревающим . Когда металл нагревается до температуры начала горения, пор осевому каналу режущего мундштука подаётся технически чистый кислород. Он попадает на нагретый металл и зажигает его. В процессе горения выделяется значительное количество кислоты. Нижележащие слои металла нагреваются, и горение быстро распространяется в глубину, прожигая сквозное отверстие, через которое режущая струя кислорода выходит, наружу пробивая металл. Если перемещать резак с определённой скоростью, то металл будет разрезаться.

Таким образом, кислородная резка состоит из нескольких процессов: подогрева металла, сжигания металла струёй кислорода, выдувания расплавленного шлака из полости реза. Подогревательное пламя обычно не тушат, и оно горит в течении всего процесса резки, так как теплоты, выделяющейся при сжигании железа в кислороде, недостаточно для возмещения всех потерь теплоты в зоне резки. Если подогревательное пламя потушить, то процесс резки быстро прекращается, металл охлаждается настолько, что кислород перестанет на него действовать, и реакция горения металла в кислороде останавливается.

Условия резки. Кислородной резке подвергаются только те металлы и сплавы, которые удовлетворяют определённым условиям.

    Температура воспламенения металла в кислороде должна быть ниже температуры его плавления. Этому требованию соответствуют низкоуглеродистые стали, температура воспламенения которых в кислороде около 1300 о С, а температура плавления около 1500 о С. Увеличение содержания углерода в стали сопровождается повышением температуры воспламенения в кислороде и понижением температуры плавления. Поэтому с ростом содержания углерода кислородная резка сталей ухудшается.

    Температура плавления оксидов металлов, образующихся при резке, должна быть ниже температуры плавления самого металла. В противном случае тугоплавкие оксиды не будут выдуваться струёй режущего кислорода, что нарушит нормальный процесс резки. Этому условию не удовлетворяют высокохромистые стали и алюминий. При резке высокохромистых сталей образуются тугоплавкие оксиды с температурой плавления 2000 о С, а при резке алюминия – оксид, температура плавления которого около 2050 о С. Кислородная резка их невозможна без применения специальных флюсов.

    Теплоты, которая выделяется при сгорании металла в кислороде, должно быть достаточно для поддержания непрерывного процесса резки. При резке стали около 70% теплоты выделяется в результате сгорания металла в кислороде и только 30% её поступает от подогревающего пламени резака.

    Образующиеся при резке шлаки должны быть жидкотекучими и легко выдуваться из места реза.

    Теплопроводность металлов и сплавов не должна быть слишком высокой, иначе теплота от подогревающего пламени и нагретого шлака интенсивно отводится от места реза, процесс резки становится неустойчивым и в любой момент может прерваться. При резке стали сгорание железа в кислороде происходит в соответствии со следующими реакциями:

Fe + 0,5O 2 = FeO + 269 МДж/кмоль,

2Fe + 1,5O 2 = Fe 2 O 3 + 272 МДж/кмоль,

3Fe + 2O 2 = Fe 3 O 4 +276 МДж/кмоль.

Из уравнений следует, что на сгорание 1 кг железа расходуется 0,38 кг (0,27 л) кислорода, или на 1 см 3 железа требуется 2,1 л кислорода. На практике же расход кислорода в процессе резки может быть выше или ниже теоретического значения, так как часть металла выдувается из полости реза в неокислённом виде и вытекающий шлак содержит не только оксиды, но и металлическое железо. Выделяемое при горении железа значительное количество теплоты оплавляет поверхность металла. Этот жидкий металл увлекается в шлак вместе с расплавленными оксидами. Количество теплоты, образующееся в результате сгорания железа при резке, в 6-8 раз превышает количество теплоты, выделяемой подогревающим пламенем резака.

Указанным условиям удовлетворяет лишь железо и его технические сплавы – стали. Большинство других металлов не поддаются кислородной резке.

Разрезаемость металла. Ниже приведены характеристики разрезаемости углеродистых сталей.

Разрезаемость кислородом конструкционных сталей оценивают по содержанию в них эквивалентного углерода:

C э = C + 0,16Mn + 0,3 (Si + Mo) + 0,4Cr + 0,2V + 0,04 (Ni + Cu).

Цифры, стоящие перед обозначением элементов, указывают их содержание в сталях (в процентах по массе).

Характеристика разрезаемости конструкционных сталей.

Разрезаемость стали

Марка стали

углерода

эквивалентного углерода

Возможна резка в любых условиях без ограничений и без подогрева до и после резки.

15Г,20Г,10Г2,15М, 15НМ и др.

В летнее время - хорошая без подогрева. В зимнее время необходим подогрев до150 о С

30Г, 40Г, 30Г2, 15Х, 20Х, 15ХФ, 10ХФ, 15ХГ, 20М, 12ХНЗА, 20ХНЗА и др.

Резка затруднена в связи с возможностью образования закалочных трещин. Необходим предварительный подогрев до 500 о С

50Г - 70Г, 35Г2 - 50Г2, 30Х - 50Х и др. 12ХМ - 35ХМ, 20ХГ - 40ХГ, 40ХН - 50ХП, 12Х2Н4А - 20Х2Н4А, 40ХФА, 5ХНМ, ШХ10, 25ХМФА и др.

Резка затруднена в связи с возможностью образования трещин после резки. Необходим предварительный подогрев до 300-400 о С и замедленное охлаждение металла после резки.

25ХГС - 50ХГС, 33ХГС - 40ХС, 20ХЗ, 35ХЮА, 37ХНЗА, 35Х2МА, 25НВА, 38ХМЮА, 40ХГМ, 45ХНМФА, 50ХГА, 50ХТФА, 5ХНМ, 12Х2НЗМА, ШХ15, ШХ15СГ и др.

Влияние легирующих элементов на разрезаемость стали при кислородной резке.

Предварительный подогрев необходим в первую очередь для предупреждения образования трещин и выполняется в газовых печах, нагревательных колодцах или пламенем многопламенной горелки.

Высоколегированные стали кислородной резке не поддаются из-за образования в процессе резки тугоплавких оксидов, которые с трудом удаляются из полости реза (разреза). Высокоуглеродистые, высоколегированные аустенистные, высокохромистые стали не поддаются газокислородной резке. В этом случае применяют кислородно-флюсовую или плазменно-дуговую резку.

Для резки необходим чистый кислород; даже небольшое количество примесей заметно снижает ей скорость и значительно повышает расход кислорода. В качестве горючего дл подогревающего пламени при кислородной резке можно использовать любой промышленный горючий газ, а также бензин, бензол, керосин и т.д.

Чугун не режется вследствие низкой температуры плавления и высокой температуры начала горения; он горит в кислороде в расплавленном состоянии, что исключает возможность получения качественного реза.

Цветные металлы также не поддаются процессу резки из-за высокой температуры плавления их оксидов и значительной теплопроводности.

Медь не режется вследствие высокой теплопроводности и незначительного количества теплоты, выделяющейся при её сгорании. Медь и её сплавы можно обрабатывать кислородно-флюсовой резкой.

Алюминий не режется по причине чрезмерной тугоплавкости образующегося оксида. Для алюминия и его сплавов применяют плазменную дуговую резку.

Показатели режима резки. Основными показателями режима резки являются: мощность пламени, давление режущего кислорода и скорость резки. От их выбора во многом зависят производительность и качество резки.

Мощность пламени определяется толщиной разрезаемого металла, составом и состоянием стали (прокат или поковка). При ручной резке из-за неравномерности перемещения резака обычно приходится в 1,2-2 раза увеличивать мощность пламени по сравнению с машинной. При резке литья следует повышать мощность пламени в 3-4 раза, так как поверхность отливок, как правило, покрыта песком и пригаром.

Для резки стали толщиной до 300 мм применяют нормальное пламя, а толщиной свыше 400 мм – подогревающее пламя с избытком ацетилена (науглероживающее) для увеличения длины факела и прогрева нижней части реза.

Давление режущего кислорода зависит от толщины разрезаемого металла, формы режущего сопла и чистоты кислорода. При повышении давления сверх нормативного скорость резки уменьшается, и качество поверхности реза ухудшается. Соответственно увеличивается расход кислорода.

Скорость резки должна соответствовать скорости окисления металла по толщине разрезаемого листа. Судить о правильном выборе скорости резки можно по следующим признакам. При замедленной скорости происходит оплавление верхних кромок разрезаемого листа и расплавленные шлаки (оксиды) вылетают из разреза в виде потока искр в направлении резки.

Слишком большая скорость характеризуется слабым вылетом пучка искр из разреза в сторону, обратную направлению резки, и значительным «отставанием» линий реза от вертикали. Возможно непрорезаение металла. При нормальной скорости резки поток искр и шлака с обратной стороны разрезаемого листа сравнительно небольшой и направлен почти параллельно кислородной струе.

Подготовка поверхности. Перед резкой поверхность разрезаемого металла должна быть тщательно очищена от окалины, ржавчины, краски и грязи. Для ручной резки достаточно очистить пламенем резака место реза в виде узкой полосы (30-50 мм) с последующей зачисткой металлической щеткой. Перед механизированной резкой на стационарных машинах листы обычно правят на листоправильных вальцах и очищают всю поверхность либо химическим, либо механическим (дробеструйной обработкой) путем.

Листы укладываются горизонтально на опоры. Свободное пространство под листом должно составлять половину толщины разрезаемого металла плюс 100мм.

Положение и перемещение резака в процессе резки. Перед началом резки подогревающим пламенем нагревают кромку разрезаемого металла до температуры оплавления и затем включают режущий кислород.

Положение резака в начале резки зависит от толщины разрезаемой стали. При прямолинейной резке листовой стали толщиной до 50 мм резак устанавливается вертикально, а при большой толщине листа – под углом 5 о к поверхности торца листа. Затем его наклоняют на 20-30 о в сторону, обратную движению резака. Такое положение резака способствует лучшему прогреву металла по толщине и повышению производительности резки. При вырезке фигурных деталей резак должен быть строго перпендикулярен к поверхности разрезаемого металла.

Дляоблегчения резки и ускорения прогрева металла целесообразно делать зарубку зубилом в начальной точке реза.

Пробивка отверстий . Техника пробивки отверстий в листовой стали имеет особенности. При небольшой толщине металла (до 20 мм) и выполнении резки вручную пробивка отверстий внутри контура листа производится резаком. После предварительного нагрева металла до температуры оплавления подогревающее пламя выключается и на время пробивки отверстия с помощью вентиля на резаке включается подача режущего кислорода, после чего пламя вновь зажигается в раскаленном металле. Такая техника пробивки отверстий исключает возможность возникновения хлопков и обратных ударов.

При пробивке отверстий в металле толщиной от 20 до 50 мм лист следует устанавливать в наклонном положении или вертикально для облегчения стекания образующегося шлака.

При пробивке отверстий в металле толщиной более 50мм вначале сверлением выполняется небольшое отверстие.

Машинная резка допускает возможность пробивки отверстий резаками в металле толщиной до 100мм. Для этого после нагрева места пробивки до температуры оплавления медленно увеличивают давление режущего кислорода до требуемого значения с одновременным включением резака (машины), скорость которого должна составлять 150-600 мм/мин. Благодаря такому приёму брызги металла не попадают на торец резака, уменьшается вероятность хлопков и обратных ударов. Отверстия можно пробивать как с контура, так и вблизи его.

В процессе резки расстояние от торца мундштука до металла следует поддерживать постоянным. При ручной резке это достигается использованием специальных тележек, прикрепляемых к головке резака, а при машинной – укладкой листа в строго горизонтальное положение и применением суппортов с плавающей кареткой (обработка листов, не подвергавшихся правке).

В случае резки листов толщиной до 100 мм расстояние от торца мундштука до поверхности разрезаемого металла должно быть на 2 мм больше длины ядра пламени. Прирезке стали толщиной более 100 мм и работе на газах-заменителях ацетилена указанное расстояние увеличивают на 30-40% во избежание перегрева мундштука.

Ручная разделительная кислородная резка.

Резка листов . Ручная разделительная резка применяется для резки листов, поковок профильного проката и скрапа. При резке в качестве горючего газа используется как ацетилен, так и газы-заменители ацетилена (пропан-бутан, природный газ и др.). В последнем случае увеличивается время предварительного подогрева металла до начала процесса резки, поэтому предпочтительнее использовать ацетилен (где это возможно). Резка скрапа преимущественно производится с применением жидкого горючего (керосин, бензин и их смеси).

Для резки листов толщиной от 3 до 300 мм используются универсальные ручные резаки Р2А-01,РЗП-01, а до 800 мм – специализированные резаки типа РЗР-2.

Резка стали малой толщины сопровождается значительным перегревом, оплавлением кромок и короблением разрезаемого металла. При этом на резаках устанавливается внутренний мундштук №0 с минимальным отверстием для режущего кислорода и наружный мундштук №1. Лучшие результаты даёт резка с последовательным расположением подогревающего пламени и режущего кислорода. Резку ведут с максимальной скоростью и минимальной мощностью подогревающего пламени. Мундштук резака наклоняют под углом 15-40 о к поверхности реза в сторону, обратную направлению резки.

Перед началом резки нужно положить лист на опоры, очистить место реза и установить на резаке мундштуки в зависимости от толщины разрезаемой стали. Мощность пламени и давления газов (кислорода и горючего) регулируют при открытом вентиле режущего кислорода. Подогрев листа начинается с кромки и длится обычно 3-10 с. Если резку начинают с середины листа, продолжительность подогрева увеличивается в 3-4 раза.

Точность и качество ручной резки зависят от правильного выбора режимов и квалификации резчика. Чтобы повысить точность, резку выполняют по разметке и направляющим (при прямолинейной резке). Качество резки в значительной степени зависит от своевременного пуска режущего кислорода, равномерного перемещения резака и поддержания постоянного расстояния между резаком и поверхностью листа. Для этого используют простейшие приспособления: циркуль для вырезки фланцев и отверстий, тележку для поддержания постоянного расстояния между резаком и поверхностью листа; направляющую линейку или уголок для прямолинейных резов и т. д.

Существуют особые технологические приемы повышения качества ручной резки. К ним относятся, например, безгратовая и пакетная резка.

Безгратовая резка применяется для получения поверхности реза без грата на нижних кромках. При этом используют кислород чистотой не ниже 99.5 и сопло режущего кислорода с расширением на выходе (для резки металла толщиной более 12 мм).

Пакетная резка позволяет получать качественный рез тонких листов (толщиной 1,5-2 мм). Листы складываются в пакет и стягиваются струбцинами. Максимальная толщина каждого листа 8-10 мм, а общая толщина пакета – не более 100 мм. Режимы резки устанавливаются по суммарной толщине пакета, однако скорость ей должна быть несколько ниже, чем для однослойной стали той же толщины.

Пакетную резку можно производить без плотного прилегания листов (с зазорами между ними до 3-4 мм). В этом случае пакет закрепляют с одной стороны и выполняют резку кислородом низкого давления (0,3-0,5 МПа) с рассверливанием горлового канала мундштука на 0,3-04 мм. Облегчает начало процесса резки сборка листов с небольшим сдвигом. Пакетную резку используют и при машинной резке.

Резка поковок и отливов. Производится ручным резаком типа РЗР-2, работающим на пропан-бутане в смеси с кислородом. Этот резак режет поковки и отливки толщиной от 300 до 800 мм. Для обеспечения качественной резки заготовок такой толщины важное значение имеют положение резака и скорость его перемещения. В начале резки резак располагают под прямым углом к разрезаемой поверхности или под углом 5 о в сторону, обратную движению. После предварительного подогрева места начала резки и пуска режущего кислорода необходимо убедиться в полном прорезании металла по всей толщине и затем начать перемещение резака. К концу реза следует немного снизить скорость резки и увеличить угол наклона резака в сторону, обратную движению, до 10-15 о для обеспечения полного прорезания конечного участка и уменьшения отставания линий реза.

Резка труб. Ручная кислородная резка используется для обрезки торцов труб под сварку, вырезки дефектных участков и отверстий в трубопроводах и т.д. Резка выполняется с использованием в качестве горючего газа ацетилена или газов-заменителей. Трубы можно резать в любых пространственных положениях. Резка труб небольшого диаметра выполняется без их поворота. При резке неповоротных труб большого диаметра резак перемещается по направляющему угольнику, а при резке поворотных труб используются специальные каретки и роликовые стенды.

Скорость резки труб с толщиной стенок 6-12 мм не превышает 800мм/мин. Для повышения скорости резки резак устанавливают под углом 15-25 о к касательной в точке пересечения оси резака с поверхностью трубы. При этом увеличивается зона взаимодействия кислорода с металлом и образующийся в процессе резки шлак нагревает лежащий впереди участок трубы, благодаря чему улучшается окисление металла. Однако время предварительного подогрева поверхности трубы до температуры воспламенения увеличивается до 60-70с. Чтобы избежать этого, необходимо ввести в зону реакции стальной пруток (или железный порошок). В этом случае средняя скорость резки труб диаметром 300-1020 мм с толщиной стенки до 12 мм составляет 1,5-2,5 м/мин, т.е. повышается в 2-3 раза по сравнению с резкой при перпендикулярном расположении резака.

Резка производится универсальными или вставными резаками. Режимы её устанавливаются в зависимости от толщины металла согласно паспортным характеристикам резаков.

Резка профильного проката. Последовательность операций резки зависит от профиля разрезаемого металла. Резку уголка начинают с кромки полки. Резку двутавровых балок начинают с резки полок, а затем прорезают стойку.

Тема 3.3.1 Кислородная и кислородно-флюсовая резка, сущность процессов, применяемое оборудование

Вопросы:

1. Сущность кислородной резки, ее применение, усло­вия резки.

2. Конструкция и принцип работы резака для ручной термической резки. Оборудование для машин­ной резки.

3. Резка разделительная, поверхностная, кисло­родным копьем.

1. Кислородная резка металлов основана на свойстве нагретого металла интенсивно сгорать в струе кисло­рода. Металл в месте разреза нагревают газовым пла­менем до температуры его воспламенения в кислороде и на нагретую поверхность направляют струю режущего кислорода. Воспламенившийся металл сгорает, а обра­зующиеся окислы сдуваются струей кислорода.

Для осуществления процесса кислородной резки не­обходимы следующие условия: температура горения ме­талла в кислороде должна быть ниже температуры его плавления; образующиеся в процессе резки окислы ме­талла должны плавиться при температуре более низкой; чем температура горения металла; теплопроводность металла должна быть низкой; количество тепла, выде­ляющегося при сгорании металла, должно быть доста­точно большим, чтобы обеспечить непрерывность про­цесса резки; консистенция окислов металла должна быть жидкой. Наиболее точно перечисленным выше ус­ловиям отвечают стали.

Процесс резки (рис.82) начинается с нагрева метал­ла 1 в начальной точке реза до температуры воспламене­ния данного металла в кислороде. Нагрев осуществляет­ся подогревающим пламенем 3, которое образуется при сгорании горючего газа в кислороде. Когда температура нагрева металла достигает требуемой величины, пуска­ется струя режущего кислорода 2.

Режущий кислород попадает на нагретый металл и зажигает его. При горении металла выделяется теплота, которая вместе с подогревающим пламенем разогревает нижележащие слои, и горение распространяется на всю толщину металла. Образующиеся при сгорании металла окислы 5, будучи в расплавленном состоянии, увлекают­ся струей режущего кислорода и выдуваются из зоны реза 4. Если перемещать резак по заданной линии с над­лежащей скоростью, то форма реза будет соответство­вать заданной конфигурации. Рис.82

Газокислородная резка находит широкое применение почти во всех областях металлургической и металлообрабатывающей промыш­ленности. Ее применяют при раскрое листовой стали, при резке профильного металла, при вырезке косынок, кру­гов фланцев и других фасонных заготовок.

Для подогрева стали до температуры 600…700°С применяют горючие газы: ацетилен, природные газы, па­ры бензина и керосина.

Газопламенная кислородная резка позволяет резать металл толщиной до 300 ммпростейшей аппаратурой, проводить резку на монтаже, и полевых условиях. Этим способом режутся малоуглеродистые и низколегированные стали.


2. Резка может быть ручной и машинной. Для ручной резки применяют универсальный резак типа УР (рис.6), имеющий сменные мундштуки.

Универ­сальный резак, подобно инжекторной горелке, состоит из двух частей: корпуса и наконечника. Резак имеет инжек­торное устройство, обеспечивающее нормальную работу при любом давлении газа. Рис.83

В резаке есть дополнительный канал 2 (рис. 83) для подачи режущего кислорода. Го­ловка резака 1 состоит из внутреннего мундштука, по которому выходит режущий кислород, и наружного мунд­штука. По кольцевому зазору между внутренним и на­ружным мундштуками подается ацетилено – кислородная смесь, которая при сгорании нагревает металл в месте резки.

Универсальный инжекторный резак укомплектовав двумя наружными и пятью внутренними мундштуками. Этим резаком можно резать низкоуглеродистые стали толщиной от 3 до 300 мм. Номера сменных мундштуков выбирают в зависимости от толщины разрезаемого металла. Например, для резки стали толщиной 3...5 мм ис­пользуют наружный и внутренний мундштуки № 1, тол­щиной 200...300 мм – наружный мундштук №2, а внут­ренний – №5. Давление кислорода при газовой резке устанавливают в пределах 0,2...1,4 МПа, в зависимости от толщины разрезаемого металла, а ацетилена – не ниже 0,001 МПа.

Машинную резку выполняют наавтоматах и полуав­томатах, имеющих один или несколько резаков, позволя­ющих проводить резку по сложному контуру.

В качестве аппаратуры для газовой резки используют кислородные и ацетиленовые баллоны. Вместо ацетиленового баллона может применяться ацетиленовый генератор.

3. По характеру и направлению кислородной струи различают 3 вида резки:

Разделительная (делают сплошные разрезы);

Поверхностная (снимает поверхностный слой);

Кислородным копьем (прожигают в металле отверстия).

При выполнении разделительной кислородной резки необходимо учитывать, какие требования предъявляются к точности резки и качеству поверхности вырезаемой детали. Чем ниже эти требования, тем меньше расходуется кислорода и горючего и тем большей может быть скорость резки.

Например, при разделочной резке (резка в лом) качество поверхности и точность резки не имеют значения. Поэтому резка ведется вручную при наибольшей возможной скорости.

При заготовительной резке (вырезается заготовка, из которой механической обработкой изготавливается деталь) качество реза также не имеет значения, но должен быть выдержан определенный размер заготовки при наименьших припусках на механическую обработку. Резка производится вручную. При этом часто применяются простейшие приспособления (опорные ролики, циркуль, направляющие тележки и т. п.), с помощью которых легче выдержать задаваемые припуски.

Резка под сварку должна осуществляться так, чтобы была чистая поверхность реза и были соблюдены заданные размеры детали. Требования повышаются, когда детали подготавливаются под автоматическую сварку. В этом случае применяется обычно механизированная резка.

Чистовая вырезка круглых и фасонных деталей, которые будут использованы без последующей механической обработки, производится только автоматами.

Таким образом, в зависимости от вида кислородной разделительной резки необходимо добиваться определенного качества реза.

Поверхностной кислородной резкой называется процесс снятия слоя металла с поверхности обрабатываемой детали, выполняемый посредством кислородной струи.

В отличие от разделительной резки, при которой кислородная струя направляется перпендикулярно поверхности обрабатываемого металла или углом вперед с углом атаки φ = 45° и более, при поверхностной резке угол атаки меньше и составляет обычно 10…30°. В результате наклонного направления струи и малой скорости ее истечения в связи с применением относительно небольших давлений кислорода (редко выше 4…5 кгс/см 2) и больших сечений выходных каналов для кислорода, струя, врезаясь в подготовленный в тепловом отношении металл, деформируется и выбрасывается в сторону той же поверхности, с которой она и была введена. На эту же Рис.84

поверхность выбрасывается и сожженный металл в виде расплавленного шлака. Если резак перемещать вперед с определенной для конкретных условий скоростью, то кислородная струя будет сжигать следующие объемы уже подогретого металла. При этом шлак в значительной

степени облегчает тепловую подготовку металла, подлежащего резке кислородной струей, позволяя применять значительную линейную скорость резки и сжигать в единицу времени большее количество металла поверхностного слоя.

Шлак, получающийся при поверхностной кислородной резке, отличается от шлака при разделительной резке большим количеством несожженного железа, а его влияние на тепловую подготовку металла при установившемся процессе резки значительно сильнее, чем при разделительной. Общий вид процесса поверхностной кислородной резки представлен на рис. 84.

Кислородное копье – стальная трубка, по которой пропускается кислород. Будучи предварительно нагретым до температуры 1350…1400°С, рабочий конец копья после пуска кислорода начинает интенсивно окисляться (гореть), развивая температуру до 2000° С. Для увеличения тепловой мощности копья внутрь трубки обычно закладывают стальной пруток.

Для начального нагрева копья пользуются обычно посторонними источниками нагрева сварочной дугой, пламенем сварочной горелки, Рис.85

подогревающим пламенем резака и др. В начальный момент, при зажигании копья, давление кислорода устанавливают небольшим, после же воспламенения трубки и установления устойчивого процесса давление кислорода поднимают до рабочего.

В процессе горения копье непрерывно укорачивается, причем в зависимости от толщины прожигаемого материала длина сгоревшей части трубки копья может быть в 5-25 раз больше длины прожигаемого отверстия. Обычно процесс прожигания кислородным копьем отверстий производят без применения подогревающего пламени.

Процесс прожигания кислородным копьем отверстий начинается с воспламенения рабочего конца копья в кислороде. После воспламенения его прижимают к поверхности прожигаемого металла, и, заглубив его в металл, увеличивают давление кислорода до требуемой рабочей величины, совершая копьем периодически возвратно-поступательные и вращательные движения. В процессе прожигания отверстия торец копья все время необходимо прижимать к обрабатываемому металлу, отрывая его лишь на короткое время при возвратно-поступательном движении. Образуемые в процессе прожигания отверстия шлаки давлением кислорода и газов, продуктов реакции окисления металла, выносятся в зазор между трубкой копья и стенкой прожигаемого отверстия.

Кислородным копьем можно прожигать отверстия во всех пространственных положениях. В качестве копья при прожигании отверстий в стали может служить стальная водогазопроводная трубка с диаметром проходного сечения 10 и 15 мм и заложенная внутрь нее низкоуглеродистая проволока диаметром 4 и 5 мм.

4. Сущность процесса кислородно-флюсовой резки состоит в том, что в зону реза, подогретую газовым пламенем, вместе со струей режущего кислорода вводят порошок флюса, который сгорает в кислороде, выделяя теплоту, повышающую температуру в зоне реза, – это термическое воздействие флюса. Продукты сгорания флюса образуют с тугоплавкими окислами разрезаемого материала жидкотекучие шлаки, которые удаляются из реза струей режущего кислорода - это химическое действие флюса. И, наконец, частицы порошка флюса сгорают не сразу и, перемещаясь в процессе горения в глубину реза, ударным трением стирают с поверхности кромок тугоплавкие окислы, способствуя их удалению из реза, - это абразивное действие флюса.

Увеличение количества выделяющейся при этом процессе теплоты позволяет применять его для резки материалов, окисление которых связано с образованием тугоплавких и вязких соединений. Расчет состава флюса для резки конкретных металлов производят по диаграммам состояния из условий получения шлакового состава с минимальной температурой плавления и вязкостью.

Аппараты для кислородно-флюсовой резки состоят из резака, флюсопитателя и устройства для подачи флюса в резак. Резаки для кислородно-флюсовой резки отличаются от резаков для кислородной резки только тем, что каналы для подачи режущего кислорода сделаны большим диаметром.

Применяют три схемы подачи флюса: внешнюю, однопроводную под высоким давлением и механическую (рис. 86). По первой схеме в верхнюю и нижнюю часть бачка 1 с флюсом подают кислород 2. В верхней части создается давление, а в нижней – кислород вдувается в шланг 3, засасывая (инжектируя) флюс. Газофлюсовая смесь подается по шлангу 3 в надетую на резак 4 головку 5, выходя из отверстий которой, засасывается струей режущего кислорода и поступает в зону реза. При этой схеме может использоваться любой кислородный резак, на него надо только надеть головку для подачи флюса. При однопроводной схеме флюс 3 инжектируется из бачка непосредственно струей режущего кислорода 6. Флюсокислородная смесь поступает по шлангу 3 через центральный канал резака 4. При механической подаче в нижней части флюсового бачка 1 установлен шнек 7 с электромеханическим приводом 8. При вращении шнека 7 флюс захватывается им и по шлангу 3 проталкивается в головку резака 4, где подхватывается струей режущего кислорода 6.

Рис. 86 Схемы подачи флюса при кислородно-флюсовой резке:

а – внешняя; б – однопроводная под давлением; в – механическая; 1 – бачок с флюсом; 2 – кислород; 3 – шланг; 4 – резак; 5 – головка; 6 – струя режущего кислорода; 7 – шнек; 8 – электромеханический привод

Техника кислородно-флюсовой резки в основном такая же, как и при кислородной резке. При кислородно-флюсовой резке мощность подогревающего пламени должна быть на 15...20 % больше, чтобы частицы флюса равномерно нагревались до воспламенения. Расстояние между торцом мундштука и поверхностью разрезаемого листа увеличивают до 25 мм, а при резке металла толщиной более 100 мм – до 40...60 мм. Это уменьшает возможность засорения выходных каналов мундштука. Скорость резки должна быть согласована с количеством флюса, подаваемого в единицу времени. Правильный выбор расхода флюса можно оценить по наличию небольшого валика расплавленного железа на верхних кромках реза. При толщине разрезаемого металла 10...200 мм скорость резки выбирают в пределах 0,76...0,23 м/мин, а расход флюса – 0,25...0,8 кг/ч. Вентиль подачи флюса открывают после зажигания подогревающего пламени. Продолжительность подогрева металла в начале процесса значительно меньше, чем при кислородной резке: для листов толщиной 10...80 мм на подогрев требуется от 15 до 120 с. Давление режущего кислорода, например, при резке стали Х18Н10Т толщиной 10...100 мм составляет 0,5...07 МПа.

Кислородно-флюсовая резка применяется не только для металлов, но и для резки бетона и железобетона. Отличие состоит в том, что поскольку бетон в кислороде не горит, при резке должны применяться флюсы с большей тепловой эффективностью, чем для металлов. Хороший результат дает флюс, состоящий из 75...85 % железного и 15...25 % алюминиевого порошков. Флюс к резаку подают по внешней схеме сжатым воздухом или азотом, вдувая газофлюсовую смесь в струю режущего кислорода. Можно резать бетон толщиной 90...300 мм со скоростью 0,15...0,04 м/мин при расходе флюса 20...42 кг/ч.

При кислородно-флюсовой резке, чтобы флюс не воспламенился в резаке, шланге или в бачке, нельзя применять порошки, содержащие более 96 % чистого железа или чистого алюминия. При резке меди, сплавов с высоким содержанием марганца и при наличии во флюсе песка необходимо пользоваться респиратором. При подаче флюса через режущее сопло резака нельзя применять мелкие легковоспламеняющиеся железные порошки. Обязательна регулярная проверка исправности резака. При резке кислородным или порошковым копьем источник опасности - интенсивный поток раскаленных частиц шлаков, разбрасываемых на расстояние нескольких метров. Это пожароопасно и может вызвать ожоги рабочих.

Кислородно-флюсовой резке подвергают высоколегированную сталь, чугун, сплавы меди и алюминия, зашлакованый металл, а также не металлические материалы – огнеупоры и железобетон.

Кислородно-флюсовую резку применяют широко в тяжелом машиностроении и металлургии для обрезки прибылей литья, резки блюмов в холодном состоянии, отрезки от горячего слитка мерных заготовок.

Сущность процесса кислородной резки

Кислородная резка основана на свойстве металлов и их сплавов сгорать в струе технически чистого кислорода. Резке поддаются металлы, удовлетворяющие следующим ос­новным требованиям:

  1. Температура плавления металла должна быть выше температуры вос­пламенения его в кислороде. Металл, не отвечающий этому требованию, плавится, а не сгорает. Например, низкоуглеродистая сталь имеет темпе­ратуру плавления около 1500° С, а воспламеняется в кислороде при темпера­туре 1300…1350°С. Увеличение содер­жания углерода в стали сопровож­дается понижением температуры плавления и повышением температуры воспламенения в кислороде. Поэтому резка стали с увеличенным содержа­нием углерода и примесей услож­няется.
  2. Температура плавления оксидов должна быть ниже температуры плав­ления самого металла, чтобы образую­щиеся оксиды легко выдувались и не препятствовали дальнейшему окисле­нию и процессу резки. Например, при резке хромистых сталей образуются оксиды хрома с температурой плав­ления 2000° С, а при резке алюми­ния - оксиды с температурой плавле­ния около 2050° С. Эти оксиды покрывают поверхность металла и прекращают дальнейший процесс рез­ки.
  3. Образующиеся при резке шла­ки должны быть достаточно жидко­текучи и легко выдуваться из разре­за. Тугоплавкие и вязкие шлаки будут препятствовать процессу резки.
  4. Теплопроводность металла дол­жна быть наименьшей, так как при высокой теплопроводности теплота, сообщаемая металлу, интенсивно от­водится от участка резки и подо­греть металл до температуры воспла­менения будет трудно.
  5. Количество теплоты, выделяю­щейся при сгорании металла, дол­жно быть возможно большим; эта теплота способствует нагреванию при­легающих участков металла и тем самым обеспечивает непрерывность процесса резки. Например, при резке низкоуглеродистой стали 65…70% общего количества теплоты выделяет­ся от сгорания металла в струе кисло­рода и только 30…35% - составляет теплота от подогревающего пламени резака.

Различают два основных вида кис­лородной резки: разделительную и поверхностную.

Рис. 1

Разделительную резку (рис. 1) применяют для вырезки различного вида заготовок, раскроя листового металла, разделки кромок под сварку и других работ, связанных с разрез­кой металла на части. Сущность про­цесса заключается в том, что металл вдоль линии разреза нагревают до температуры воспламенения его в кис­лороде, он сгорает в струе кислорода, а образующиеся оксиды вы­дуваются этой струей из места раз­реза.

Поверхностную резку (рис. 95, а, б, в) применяют для снятия поверхностного слоя металла, разделки канавок, удаления поверхностных дефектов и других работ.

Рис. 2

Применяют два вида поверхност­ной резки - строжку и обточку . При строжке резак совершает возвратно- поступательное движение как строгальный резец. При обточке резак работает как токарный peзец.

Оборудование для кислородной резки

Резаки цля кислородной резки служат для правильного решения горю­чих газов или паров жидкости с кислородом, образования подогревающего пламени и подачи в зону резки струи чистого кислорода. Резаки классифи­цируют по назначению (универсаль­ные и специальные ), по принципу смешения газов (инжекторные , и безынжекторные ), по виду реprи (для разделительной и поверхностной рез­ки), по применению (для ручной и машинной резки). Наибольшее применение получили универсальные инжек­торные ручные резаки для разделительной резки (рис. 3).

Рис. 3

Они отли­чаются от сварочных горелок нали­чием отдельной трубки для подачи кислорода и особым устройством го­ловки, состоящим из двyx сменных мундштуков (наружного — для подо­гревающего пламени и внутреннего — для струи чистого кислорода). Аце­тилен подается по шлангу к ниппелю 1 , а кислород - к ниппелю 2 . От нип­пеля 2 кислород идет по двум направ­лениям. Одна часть кислорода, как в обычных сварочных горелках, посту­пает в инжектор и затем в смеси­тельную камеру. Здесь образуется горючая смесь кислорода с ацети­леном, засасываемым через ниппель 1 . Горючая смесь проходит по трубке, выходит через кольцевой зазор между внутренним и наружным мундштуком 5 и создает подогревательное пламя. Другая часть кислорода через трубки 3 и 4 поступает в центральное отверстие внутреннего мундштука 5 и образует струю режущего кислорода, сжигающую металл выдуваю­щую образующиеся оксиды из зоны реза.

Большое применение получил руч­ной универсальный резак «Факел» (улучшенная конструкция резака «Пламя» ). Он имеет пять внутренних и два наружных мундштука, позволяющих резать металл толщиной до 300 мм со скоростью (в зависимо­сти от металла и его толщины) 80…560 мм/мин . Для работы на газах-заменителях ацетилена используются резаки РЗР . Они отличаются боль­шими размерами сечении инжекторов и мундштуков. Промышленность се­рийно выпускает вставные сменные резаки, предназначенные для присоединения к стволам универсальных сварочных горелок (например, резак РГС-70 к горелкам «Звезда» и ГС-3 , резак РГМ-70 - к горелкам «Звез­дочка» и ГС-2 ). Это создает большие удобства в строительно-монтажных условиях при частых переходах от сварки к резке и наоборот.

Рис. 4

Для машинной резки применяют стационарные шарнирные машины АСШ-2 (рис. 4) и АСШ-70 , отли­чающийся от АСШ-2 более совер­шенным приводом и наличием панто­графа, позволяющего производить вырезку одновременно трех деталей. Толщина разрезаемого металла 5… 100 мм . Переносные машины пред­ставляют собой самоходные тележки, оснащенные резаком и перемещающиеся по разрезаемому металлу. Приводом служит электродвигатель, пружинный механизм или газовая тур­бина. Например, машина «Радуга» предназначена для резки стальных листов толщиной 5… 160 мм со ско­ростью 90… 1600 мм/мин . Масса машины 16 кг . Переносные машины «Спутник-3» предназначены для резки стальных труб диаметром 194…1620 мм при толщине стенки 5…75 мм со скоростью 100…900 мм/мин . Масса машины - 18 кг .

Технология кислородной резки

Поверхность разрезаемого метал­ла должна быть хорошо очищена от грязи, краски, окалины и ржавчины. Для удаления окалины, краски и мас­ла следует медленно провести пламе­нем горелки или резака по поверх­ности металла вдоль намеченной ли­нии разреза. При этом краска и масло выгорают, а окалина отстает от ме­талла. Затем поверхность металла окончательно зачищают металличе­ской щеткой.

Процесс резки начинают с нагре­вания металла. Подогревающее пламя резака направляют на край разрезаемого металла и нагревают до температуры воспламенения его в кислороде (практически почти до температуры плавления). Затем пускают струю режущего кислорода и переме­щают резак вдоль линии разреза. Кислород сжигает верхние нагретые слои металла. Теплота, выделяющаяся при сгорании, нагревает нижележащие слои металла до темпера­туры воспламенения и поддерживает непрерывность процесса резки.

При резке листового материала толщиной 20…30 мм мундштук резака устанавливают вначале под углом 0…5° к поверхности, а затем — под углом 20…30° в сторону, обратную движению резака. Это ускоряет процесс разогрева металла и повышает производительность.

Рис. 5

Резку металла большой толщины выполняют следующим образом. Мундштук резака вначале устанавливают перпендикулярно поверхности разрезаемого металла, так чтобы струя подогревающего пламени, а за­тем и режущего кислорода распола­галась вдоль вертикальной грани разрезаемого металла. После прогре­ва металла до температуры воспла­менения пускают струю режущего кислорода. Перемещение резака вдоль линии резания начинают после того, как в начале этой линии ме­талл будет прорезан на всю его толщину. Чтобы не допустить отста­вания резки в нижних слоях металла, в конце процесса следует постепенно замедлить скорость перемещения резака и увеличить его наклон до 10…15° в сторону, обратную движению. Рекомендуется начинать процесс резки с нижней кромки, как пока­зано на рис. 5. Предварительный подогрев до 300…400°С позволяет производить резку с повышенной ско­ростью. Скорость перемещения реза­ка должна соответствовать скорости горения металла. Если скорость перемещения резака установлена правиль­но, то поток искр и шлака вылетает из разреза прямо вниз, а кромки получаются чистыми, без натеков и подплавлений. При большой скоро­сти перемещения резака поток искр отстает от него, металл в нижней кромке не успевает сгорать и поэтому сквозное прорезание прекращается. При малой скорости сноп искр опережает резак, кромки разреза оплав­ляются и покрываются натеками.

Давление режущего кислорода устанавливают в зависимости от тол­щины разрезаемого металла и чисто­ты кислорода. Чем выше чистота кислорода, тем меньше давление и расход кислорода. Зависимость дав­ления кислорода от толщины металла при ручной резке следующая:

Ширина и чистота разреза зави­сят от способа резки и толщины разрезаемого металла. Машинная резка дает более чистые кромки и меньшую ширину разреза, чем руч­ная резка. Чем больше толщина ме­талла, тем больше ширина разреза. Это видно из следующих данных:

Толщина металла, мм 5…50 50…100 100…200 200…300
Ширина разреза, мм
при ручной резке 3…5 5…6 6…8 8…10
при машинной резке 2,5…4,0 4,0…5,0 5,0…6,5 6,5…8,0

ГОСТ 14792-80 «Детали и заго­товки, вырезаемые кислородной и плазменно-дуговой резкой. Точность, качество поверхности реза» предусматривает предельные отклонения номинальных размеров деталей (заго­товок) в зависимости от способа резки, размеров деталей (заготовок) и тол­щины металла; установлено три класса точности:

Предусмотрены также показатели качества поверхности реза:

Эти показатели относятся к ма­шинной кислородной резке низко­углеродистой стали кислородом 1-го и 2-го сортов.

Процесс резки вызывает измене­ние структуры, химического состава и механических свойств металла. При резке низкоуглеродистой стали тепло­вое влияние процесса на ее струк­туру незначительно. Наряду с участками перлита появляется неравно­весная составляющая сорбита, что да­же несколько улучшает механические свойства металла. При резке стали, имеющей повышенное содержание уг­лерода, а также легирующие примеси, кроме сорбита, образуются троостит и даже мартенсит. При этом сильно повышатся твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образова­ние холодных трещин. Изменение химического состава стали проявля­ется в образовании обезуглероженного слоя металла непосредственно на поверхности резания в результате выгорания углерода под воздействием струи режущего кислорода. Несколь­ко глубже находится участок с боль­шим содержанием углерода, чем у исходного металла. Затем по мере удаления от разреза содержание уг­лерода уменьшается до исходного. Так же происходит выгорание леги­рующих элементов стали.

Механические свойства низкоугле­родистой стали при резке почти не изменяются. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становят­ся более твердыми и дают трещины в зоне резания.

Нержавеющие хромистые и хромо­никелевые стали, чугуны, цветные ме­таллы и их сплавы не поддаются обычной газокислородной резке, так как не удовлетворяют указанным вы­ше условиям.

Для этих металлов применяют кислородно-флюсовую резку, сущ­ность которой заключается в следующем. В зону резания с помощью специальной аппаратуры непрерывно подается порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повыша­ется температура места разреза. Кроме того, продукты сгорания флюса реагируют с тугоплавкими оксидами и дают жидкотекучие шлаки, легко вытекающие из места разреза.

В качестве флюса используется мелкогранулировянный железный по­рошок марки ПЖ5М (ГОСТ 9849 — 74) . При резке хромистых и хромо­никелевых сталей во флюс добавляют 25…50% окалины. При резке чугуна добавляют ~30…35% доменного фер­рофосфора. При резке меди и ее спла­вов применяют флюс, состоящий из смеси железного порошка с алюминиевым порошком (15…20% ) и ферро­фосфором (10… 15% ).

Резку производят установкой УРХС-5 состоящей из флюсопитателя и резака. Установка ис­пользуется для ручной и машин­ной кислородно-флюсовой резки высоколегированных хромистых и хромоникелевых сталей толщиной 10… 200 мм при скорости резания 230…760 мм/мин . На 1 м разреза расхо­дуется кислорода 0,20…2,75 м 3 , аце­тилена — 0,017…0,130 м 3 и флюса — 0,20…1,3 кг .

При кислородно-флюсовой резке некоторая часть теплоты подогре­вающего пламени уходит на нагре­вание флюса. Поэтому мощность пла­мени берется на 15…25% выше, чем при обычной газовой резке. Пламя должно быть нормальным или с не­которым избытком ацетилена. Рас­стояние от торца мундштука резака до поверхности разрезаемого металла устанавливается 15…25 мм . При ма­лом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и обратные удары. Кроме того, наблюдается перегрев мундшту­ка, приводящий к нарушению про­цесса резки. Угол наклона мундштука должен составлять 0…10 0 в сторону, обратную направлению резки. Хоро­шие результаты дает предварительный подогрев. Хромистые и хромоникелевые стали требуют подогрева до 300…400°С , а сплавы меди - до 200…350°С .

Скорость резки зависит от свойств металла и его толщины. Чугун тол­щиной 50 мм режут со скоростью 70…100 мм/мин . При этом на 1 м разреза расходуется 2…4 м 3 кислоро­да, 0,16…0,25 м 3 ацетилена и 3,5…6 кг флюса. Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромоникелевых сталей расход всех материалов снижается почти в 3 раза .

Газовая резка металлов основана на способности железа (открытой в 1776 г. Лавуазье), нагретого до определенной температуры, вступать в реакцию с кислородом. Началом практического освоения этого открытия послужило полученное в 1895 г. французским ученым Ле Шателье высокотемпературное пламя при горении смеси ацетилена с кислородом.

Газовая резка предназначена для разделительной и поверхностной обработки металлов. При разделительной обработке, когда режущая струя кислорода напра:влана приблизительно перпендикулярно к.разрезаемой поверхности, металл прорезается «а всю толщину до отделения одной части от другой. Разделительная газовая резка получила наибольшее распространение в промышленности и позволяет успешно резать стали толщиной от 3 до 2000 мм.

Поверхностная обработка представляет собой процесс, при котором снимается толпко поверхностная часть металла. Резка происходит посредством |большого наклона резака к поверхности металла, при этом струя режущего кислорода выжигает на его поверхности канавку овального сечения.

Наибольшее применение поверхностная резка получила в металлургии для удаления дефектов с поверхности литья и проката черных металлов. В некоторых случаях поверхностная резка с успехом может заменять черновую механическую обработку - строжку, обточку, расточку и т. д.

В последнее время газовую резку принято называть кислородной, так как все ее процессы связаны с применением кислорода. Кроме газовой резки различают: кислородно-флюсовую, плазменную, дуговую, воздушно-дуговую, кислородно-дуговую, лазерную, копьевую и др.

Все указанные способы резки выполняются путем нагрева ме- ;- талл‘а, поэтому их объединяет оощее название - термическая резка металла.

  • сущность газовой (кислородной) резки заключается в том, что на предварительно нагретый участок разрезаемого металла до температуры воспламенения подается струя режущего кислорода. При этом происходит интенсивное окисление поверхности металла с выделением большого количества тепла. Верхние слои металла, сгорая, подогревают до воспламенения в струе кислорода нижележащие слои до тех пор, пока кислородная струя полностью не прорежет металл по всей толщине. Образующиеся в процессе резки продукты окисления металла (окислы, шлаки) выдуваются кинетической энергией струи из полости реза.

Таким образом, кислородная резка представляет собой совокупность трех одновременно происходящих процессов: подогрев металла до температуры воспламенения, сгорание металла в струе кислорода, удаление расплавленного шлака из полости реза. При отсутствии хотя бы одного из указанных процессов резка становится невозможной.

При кислородной резке необходимо, чтобы свойства разрезаемого металла удовлетворяли следующим условиям:
– температура воспламенения разрезаемого металла в среде кислорода должна быть ниже температуры его плавления;
– температура плавления окислов - не превышать температуру плавления разрезаемого металла. В противном случае образующиеся тугоплавкие окислы будут препятствовать дальнейшему окислению металла;
– количество тепла, выделяющегося в процессе кислородной резки, должно быть достаточным для нагрева прилегающих участков металла до температуры его воспламенения и непрерывного поддержания процесса резки. При этом металл должен хорошо проводить тепло, чтобы не препятствовать своему нагреву;
– образующиеся при резке окислы должны быть жидкотекучи-ми и легко выдуваться кислородной струей из полости реза;
– ручная и механизированная резка

Кислородная резка может быть ручная или механизированная (автоматическая, машинная). Ручная резка производится с помощью ручных резаков (Р2А-01, РЗП-01 и др.). Резак перемещается во всех положениях вручную.

Механизированная кислородная резка отличается тем, что резак или несколько резаков перемещаются по линии реза с помощью механических устройств. Для этой цели разработаны различные стационарные машины (ПКЦ 3,5-6-10УХЛ4, ПкК-2-4Ф-2, «Днепр 2,5-К2», АСШ-70 и др.) с механическим, магнитным, фотоэлектронным и программным управлением, а также переносные машины «Микрон-2», «Спутник-3», «Орбита-2».

Ручная кислородная резка, несмотря на свою простоту и универсальность, не обеспечивает высокой чистоты и точности вырезаемых заготовок, поэтому запрещается в качестве последней операции (требуется механическая обработка). При ручной резке используется только один резак. Применение двух и более резаков невозможно.

Механизированная кислородная резка по сравнению с ручной обладает следующими преимуществами:
– чистота реза и точность вырезаемых деталей во многих случаях не требуют последующей механической обработки;
– возможность одновременного использования двух и более резаков, что значительно повышает производительность резки;
– не требуется предварительной разметки или наметки по шаблону разрезаемого металла;
– обеспечивается более рациональное использование кислорода;
– возможность осуществления пакетной резки.

Характерным примером замены механической обработки термической резкой является внедрение операции вырезки (вместо расточки) отверстия в двутавре тормозной балки шахтной подъемной машины (рис. 1).

Рис. 1. Пример вырезки (вместо расточки) отверстия в двутавре тормозной балки подъемной машины

Внедрение механизированной резки дало возможность разгрузить крупные расточные станки, устранить транспортировку двутавра в механический цех и обратно, что привело к снижению себестоимости сварного узла и значительному сокращению цикла его изготовления.

Подогревающее пламя нагревает металл до температуры горения и очищает поверхность от ржавчины, окалины и д.р. Продольная струя кислорода сжигает металл. Благодаря перемещению резака образуется щель реза. Жидкотекучие щлаки выдуваются из щели реза.

Для процессакислородной резки необходимо выполнение следующих условий:

Металл будет переходить в жидкое состояниедо начала процесса окисления. То есть металл горит в твердом состоянии, рез получается ровным по ширине, поверхность его гладкая, продукты горения легко удаляются кислородной струей. Металл, не отвечающий этому требованию, будет плавиться, а не сгорать.

Наибольшее влияние на температуру горения оказывает содержание углерода. Чем больше углерода в металле, тем выше температурагоренияи ниже температура плавления. При содержании углерода более 1%процессрезки резко ухудшается. Стали, содержащие более 1,6% углерода, расплавляются до начала горения. Поэтому кислородная резка инструментальных сталей и чугуна, содержащих более 2% углерода невозможна.

Например:

  • Низкоуглеродистая сталь имеет температуру плавления около 1500ºС, а воспламеняется (горит) в кислороде при температуре 1300 – 1350ºС;
  • Температура горения Al 900°С, а температура плавления Al 660° С. Алюминий и его сплавы не поддаются газовой резке. Алюминий может гореть только в жидком состоянии, поэтому получить ровную форму реза не удается

2 .

Тогда они при резке жидкотекучие и легко удаляются из реза.

При окислении хромистыхи хромоникелевых сталей образуются окислы хрома, температура плавления которых значительно выше температуры горения стали. При окислении алюминиевых сплавов также образуется окислы алюминия с температурой плавления2050°С. Указанные тугоплавкие окислы, покрывая поверхность реза,препятствуют дальнейшему окислению металла.
Поэтому стали с содержанием хрома более 5% и алюминиевые сплавы обычному процессу газовой резки не поддаются.

Например:

  • при резке хромистых сталей образуются окислы хрома с температурой плавления 2000°С;
  • при резке алюминия образуются окислы с температурой плавления около 2050°С

Большое количество хрома и кремния сильно повышают вязкость окислов.Поэтому при резке сталей с большим содержанием хрома и чугуна, содержащего большое количество кремния, образующийся шлак плохо выдувается струей кислорода, затрудняя процесс резки.

В металлах, обладающих высокой теплопроводностью, поступающее тепло интенсивно отводится от места резки и процесс резки или не начнется или будет прерываться. Медь, алюминий и их сплавы обладают высокой теплопроводностью.

Всем перечисленным условиямполностью отвечают нелегированные инизколегированные конструкционные стали.

Металлы, которые неудовлетворяют условиям газовой резки:

Алюминий - 1,2,3,4 условиям;
Высоколегированные стали (нержавеющая сталь) – 2 условию;
Медь – 3 условию;
Серый чугун - 1 условию.

Запомни

Основные условия газовой резки:

1. Температура горения металла в кислороде должна быть ниже температуры плавления .

2 . Температура плавления образующихся при резке окислов должна быть ниже температуры горения металла.

3. Возникающие при резке окислы не должны быть слишком вязкими.

4. Разрезаемый металл не должен обладать слишком высокой теплопроводностью.

Нелегированные и низколегированные стали хорошо поддаются газовой резке, так как выполняются все 4 условия.