Угловой диаметр дифракционного. Угловой диаметр

Угловой диаметр дифракционного. Угловой диаметр

Случай дифракции света с препятствием, имеющим открытую малую часть 1 -й зоны Френеля, представляет особый интерес для практики. Дифракционная картина в данном случае m = R 2 L λ ≪ 1 или R 2 ≪ L λ , наблюдается при больших расстояниях. Когда R = 1 м м, λ = 550 н м, тогда расстояние L будет более двух метров. Такие проведенные в далекую точку лучи считаются параллельными. Данный случай рассматривается как дифракция в параллельных лучах или дифракция Фраунгофера.

Определение 1

Главное условие дифракции Фраунгофера – это наличие зон Френеля, проходящих через точку волны, являющихся плоскими относительно друг друга.

При расположении собирающей линзы за препятствием прохождения лучей под углом θ они сходятся в некоторой точке плоскости. Это показано на рисунке 3 . 9 . 1 . Отсюда следует, что любая точка в фокальной плоскости линзы эквивалентна бесконечно удаленной точке в отсутствии линзы.

Рисунок 3 . 9 . 1 . Дифракция в параллельных лучах. Зеленая кривая – распределение интенсивности в фокальной плоскости (масштаб увеличен по оси о х).

Теперь доступна дифракционная картина Фраунгофера, располагаемая в фокальной плоскости линзы. Исходя из геометрической оптики, фокус должен иметь линзу с точечным изображением удаленного предмета. Изображение такого предмета размывается по причине наличия дифракции. Это и есть проявление волновой природы света.

Оптическая иллюзия не дает точечного изображения. Если дифракция Фраунгофера с круглым отверстием диаметра D имеет дифракционное изображение, состоящее из диска Эйри, то на него приходится около 85 % энергии света с окружающими его светлыми и темными кольцами. Это показано на рисунке 3 . 9 . 2 . Полученное пятно принимают за изображение точечного источника и рассматривают как дифракцию Фраунгофера на отверстии.

Определение 2

Для определения радиуса центрального пятна фокальной плоскости линзы используется формула r = 1 , 22 λ D F .

Оправа линзы обладает свойством дифракции света, если лучи падают на нее, то есть выполняет роль экрана. Тогда D обозначается как диаметр линзы.

Рисунок 3 . 9 . 2 . Дифракционное изображение точечного источника (дифракция на круглом отверстии). В центральное пятно попадает около 85 % энергии света.

Дифракционные изображения имеют очень маленькие размеры. Центральное светлое пятно в фокальной плоскости с диаметром линзы D = 5 с м, фокусным расстоянием F = 50 с м, длиной волны в монохроматическом свете λ = 500 н м имеет значение около 0 , 006 м м. Сильное искажение маскируется в фотоаппаратах, проекторах по причине несовершенной оптики. Только высокоточные астрономические приборы могут реализовать дифракционный предел качества изображений.

Дифракционное размытие двух близко расположенных точек может дать результат наблюдения за одной точкой. Когда астрономический телескоп настроен на наблюдение за двумя близкими звездами с угловым расстоянием ψ , то дефекты и аберрации устраняются, за счет этого фокальная плоскость объектива выдает дифракционные изображения звезд. Это рассматривается в качестве дифракционного предела объектива.

Рисунок 3 . 9 . 3 . Дифракционные изображения двух близких звезд в фокальной плоскости объектива телескопа.

Вышеуказанный рисунок объясняет, что расстояние Δ l между центрами дифракционных изображений звезд превышает значение радиуса r центрального светлого пятна. Данный случай позволяет воспринимать изображение раздельно, значит, есть возможность видеть одновременно две близко расположенные звезды.

Если уменьшить угловое расстояние ψ , тогда произойдет перекрывание, что не позволит видеть сразу две близкие звезды. В конце XIX века Дж. Релей предложил считать разрешение условно полным при расстоянии между центрами изображений Δ l равно радиусу r Диска Эйри. Рисунок 3 . 9 . 4 . подробно показывает данный процесс. Равенство Δ l = r считают критерием решения Релея. Отсюда следует, что Δ l m i n = ψ m i n ċ F = 1 , 22 λ D F или ψ m i n = 1 , 22 λ D .

Если телескоп имеет диаметр объектива D = 1 м, тогда есть возможность разрешения двух звезд при нахождении на угловом расстоянии ψ m i n = 6 , 7 ċ 10 – 7 р а д (для λ = 550 н м). Так как разрешающая способность не может быть более значения ψ m i n , то ограничение производится с помощью дифракционного предела космического телескопа, а по причине атмосферных искажений.

Рисунок 3 . 9 . 4 . Предел решения по Релею. Красная кривая – распределение суммарной интенсивности света.

Начиная с 1990 года, космический телескоп Хаббла был выведен на орбиту с зеркалом, имеющим диаметр D = 2 , 40 м. Предельным угловым разрешением телескопа на длине волны λ = 550 н м считают значение ψ m i n = 2 , 8 ċ 10 – 7 р а д. Работа космического телескопа не зависит от атмосферных возмущений. Следует ввести величину R , которая обратная величине предельного угла ψ m i n .

Определение 3

Иначе говоря, величина называется силой телескопа и записывается как R = 1 ψ m i n = D 1 , 22 λ .

Чтобы увеличить разрешающую способность телескопа, увеличивают размер объектива. Эти свойства применимы для глаз. Его работа аналогична телескопу. Диаметр зрачка d з р выступает в роли D . Отсюда предположим, что d з р = 3 м м, λ = 550 н м, тогда для предельного углового разрешения глаза принимаем формулу ψ г л = 1 , 22 λ d з р = 2 , 3 ċ 10 − 4 р а д = 47 " " ≈ 1 " .

Результат оценивается с помощью разрешающей способности глаза, которая выполняется, учитывая размер светочувствительных элементов сетчатки. Делаем вывод: световой пучок с диаметром D и длиной волны λ , благодаря волновой природе света, испытывает дифракционное уширение. Угловая полуширина φ пучка относится к порядку λ D , тогда запись полной ширины пучка d на расстоянии L примет вид d ≈ D + 2 λ D L .

На рисунке 3 . 9 . 5 . отчетливо видно, что при удалении от препятствия происходит трансформация пучка света.

Рисунок 3 . 9 . 5 . Пучок света, расширяющийся вследствие дифракции. Область I – понятие луча света, законы геометрической оптики. Область II – зоны Френеля, пятно Пуассона. Область III – дифракция в параллельных лучах.

Изображение показывает угловое расхождение пучка и его уменьшение при увеличении поперечного размера D . Данное суждение относится к волнам любой физической природы. Отсюда следует, что для посыла узкого пучка на Луну предварительно нужно произвести его расширение, то есть применить телескоп. При направлении лазерного пучка в окуляр он проходит все расстояние внутри телескопа с диаметром D .

Рисунок 3 . 9 . 6 . Разрешение лазерного пучка с помощью телескопической системы.

Только при таких условиях пучок дойдет до поверхности Луны, а радиус пятна запишется как
R ≈ λ D L , где L обозначается как расстояние до Луны. Принимаем значение D = 2 , 5 м, λ = 550 н м, L = 4 ċ 10 6 м, получим R ≈ 90 м. При направлении пучка с диаметром в 1 с м его «засвет» на Луне был бы в виде пятна с радиусом в 250 раз больше.

Микроскоп служит для наблюдения близко расположенных объектов, поэтому разрешающая способность зависит от линейного расстояния между близкими точками. Расположение объекта должно быть вблизи переднего фокуса объектива. Существует специальная жидкость, которой заполняют пространство перед объективом, что наглядно показано на рисунке 3 . 9 . 7 . Геометрически сопряженный объект, находящийся в этой же плоскости с его увеличенным изображением, рассматривается при помощи окуляра. Каждая точка размыта по причине дифракции света.

Рисунок 3 . 9 . 7 . Иммерсионная жидкость перед объективом микроскопа.

Определение 4

Предел разрешения объектива микроскопа был определен в 1874 г Г. Гельмгольцем. Такая формула записывается:

l m i n = 0 , 61 λ n · sin α .

Знак λ требуется для обозначения длины волны, n – для показателя преломления иммерсионной жидкости, α – для обозначения апертурного угла. Величину n · sin α называют числовой апертурой.

Качественные микроскопы имеют ампертурный угол α , который приближен к значению предела α ≈ π 2 . По формуле Гельмгольца наличие иммерсии позволяет улучшить предел разрешения. Предположим, что sin α ≈ 1 , n ≈ 1 , 5 , тогда l m i n ≈ 0 , 4 λ .

Отсюда следует, что микроскоп не дает полной возможности просмотра каких-либо деталей с размерами намного менее размера длины световой волны. Волновые свойства света влияют на предел качества изображения объекта, который получаем с помощью любой оптической системы.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рисунок 1.

Важнейшей величиной, характеризующей объектив, является отношение диаметра входного отверстия объектива к его фокусному расстоянию, которое называется относительным отверстием.

Количество света, собранное объективом от звезды (точечного источника), будет зависеть только от входного отверстия (~ D 2). Иначе обстоит дело с объектами, имеющими заметные угловые размеры, например, с планетами. В этом случае видимая яркость изображения будет уменьшаться, в то время как при наблюдении точечных объектов - увеличивается ~ D 2 . В самом деле, при увеличении фокусного расстояния F пропорционально увеличиваются и линейные размеры изображения такого светила. При этом количество света, собираемое объективом при неизменном D, остается прежним. Одно и то же количество света распределяется, следовательно, на большую площадь изображения, которое растет ~ F 2 . Таким образом, при увеличении F (или, что то же: при уменьшении A) вдвое, площадь изображения увеличивается вчетверо. Количество света на единицу площади, которое определяет яркость изображения, уменьшается в том же отношении. Поэтому изображение будет тускнеть при уменьшении относительного отверстия.

Совершенно такое же действие окажет и окулярное увеличение, понижающее яркость изображения в том же отношении, что и уменьшение относительного отверстия A объектива.

Поэтому для наблюдения самых протяженных объектов (туманностей, комет) предпочтительно слабое увеличение, но, конечно, не ниже наименьшего полезного. Оно может быть значительно повышено при наблюдении ярких планет, и в особенности Луны.

Увеличение телескопа. Если обозначить фокусное расстояние объектива через F и фокусное расстояние окуляра через f, то увеличение M определится формулой:

Наибольшее допускаемое увеличение при спокойном состоянии атмосферы не превышает 2D, где D - диаметр входного отверстия.

Диаметр выходного зрачка. Наблюдаемый предмет виден в телескоп отчетливо лишь в том случае, если окуляр установлен на строго определенном расстоянии от фокуса объектива. Это такое положение, при котором фокальная плоскость окуляра совмещена с фокальной плоскостью объектива. Приведение окуляра в такое положение называется наводкой на фокус или фокусировкой. Когда телескоп наведен на фокус, то лучи от каждой точки предмета выходят из окуляра параллельными (для нормального глаза). Световые лучи от изображений звезд, образованные фокальной плоскости объектива, превращаются окуляром в параллельные пучки.

f
F
D
d

Площадка, где пересекаются световые пучки звёзд называется выходным зрачком . Наведя телескоп на светлое небо мы легко можем увидеть выходной зрачок, поднеся к окуляру экран из кусочка белой бумаги. Приближая и удаляя этот экран, мы найдем такое положение, при котором светлый кружочек имеет наименьшие размеры и в то же время наиболее отчетлив. Легко понять, что выходной зрачок есть не что иное, как изображение входного отверстия объектива, образованное окуляром. Из рисунка 2. видно, что

Последнее отношение позволяет определить увеличение, даваемое телескопом, если не известны ни фокусное расстояние объектива, ни фокусное расстояние окуляра.

В выходном зрачке концентрируется весь свет, собираемый объективом. Поэтому заслоняя часть выходного зрачка, мы как бы заслоняем часть объектива. Отсюда вытекает одно из важнейших правил: выходной зрачок не должен быть больше зрачка глаза наблюдателя, иначе часть света, собранная объективом, будет потеряна.

Из определения выходного зрачка следует, что величина его тем меньше и он тем ближе к окуляру, чем короче фокусное расстояние окуляра (чем "сильнее" окуляр), и наоборот.

Определим увеличение, которое дает окуляр, образующий выходной зрачок, равный зрачку глаза (наименьшее полезное или равнозрачковое увеличение m):

где d - диаметр зрачка глаза или

Величина поля зрения. Угол, под которым диафрагма окуляра видна наблюдателю, называется угловым полем зрения окуляра, в отличие от углового поля зрения телескопа, представляющего угловой поперечник видимого в телескоп кружка на небе.

Величина поля зрения телескопа равна величине поля зрения окуляра, деленной на увеличение.

Разрешающая способность телескопа. Из-за явления дифракции на краях объектива звезды видны в телескоп в виде дифракционных дисков, окруженных несколькими кольцами убывающей интенсивности. Угловой диаметр дифракционного диска:

где l - длина световой волны и D - диаметр объектива. Два точечных объекта с видимым угловым расстоянием Q находятся на пределе раздельной видимости, что определяет теоретическую разрешающую способность телескопа. Атмосферное дрожание снижает разрешающую способность телескопа до:

Разрешающая способность определяет способность различить два смежных объекта на небе. Телескоп с большей разрешающей способностью позволяет лучше увидеть два близко расположенных друг к другу объекта, например, компоненты двойной звезды. Лучше также можно увидеть детали любого одиночного объекта.

Когда угловая разрешающая способность мала, объекты выглядят как одиночное размытое пятно. С увеличением разрешающей способности два источника света станут различимыми как отдельные объекты.

П. П. Добронравин

В начале 1610 г. Галилей навел на небо только что построенный им телескоп. В первые же ночи наблюдений он увидел много интересного: увидел, что Луна имеет горы и равнины, что планеты имеют заметные диски, открыл четырех спутников Юпитера, смог различить фазы Меркурия и Венеры, подобные фазам Луны, а на дисках Юпитера и Марса мог заметить даже некоторые детали. Но, направив телескоп на звезды, Галилей, вероятно, был несколько разочарован. Правда, звезды в телескоп были видны более яркими, их стало больше, но каждая звезда осталась такой же точкой, как была видна глазом, и даже наоборот: яркие звезды стали как бы меньше, они потеряли те лучи, которые окружали их при рассматривании невооруженным глазом.

Обсерватория в Барселоне.

Рис. 1. Дифракция волн на воде. Волны огибают препятствие.

Рис. 3. Простейший звездный интерферометр-телескоп, на объектив которого одета крышка с двумя отверстиями.

Рис. 4. Ход лучей в 6-метровом звездном интерферометре.

Рис 5. Большой телескоп обсерватории Моунт-Вильсон.

Рис. 6, 2,5-метровое зеркало обсерватории Моунт-Вильсон.

Рис. 7. Вид дифракционного диска звезды и полос на нем при разных расстояниях между зеркалами интерферометра. Полосы слабее всего видны на средних изображениях, когда расстояние между зеркалами близко к тому, которое соответствует видимому диаметру звезды

Рис. 8. Расположение зеркал в 15-метровом звездном интерферометре.

Рис. 9. Сравнительная величина диаметров некоторых звезд и орбит Земли и Марса.

Наука и жизнь // Иллюстрации

Рис. 10. Обсерватория Моунт-Вильсон.

С тех пор прошло 300 лет. Современные телескопы неизмеримо превосходят и по величине и по качеству оптики первый телескоп Галилея, однако до сих пор никто не видел в телескоп диск звезды. Правда, звезда при рассматривании в телескоп, особенно при сильном увеличении, кажется кружочком, но диаметры этих кружочков одинаковы для всех звезд, чего не могло бы быть, если бы мы видели реальный диск звезды, - ведь звезды различны по величине и находятся на различных расстояниях от нас. К тому же при увеличении диаметра объектива телескопа диаметр этих кружочков уменьшается, звезды становятся ярче, но меньше.

В оптике доказывается, что видимые нами диски звезд ничего общего с действительными размерами звезд не имеют и являются следствием самой природы света, получаются вследствие «дифракции» света. Границу видимости в телескоп ставит сам свет.

Но, как часто бывает в науке, те же самые свойства света, умело использованные, дали возможность измерить действительные диаметры звезд.

Немного о свойствах света

Электромагнитная теория света учит, что световой луч можно рассматривать как совокупность электромагнитных колебаний - волн, распространяющихся в пространстве с колоссальной скоростью - 300 000 км/сек. Колебания имеют определенную периодичность во времени и в пространстве. Это значит, во-первых, что они совершаются с определенной частотой - порядка 600 биллионов раз в секунду для видимого света, во-вторых. что имеются точки вдоль луча на некотором определенном расстоянии друг от друга, которые находятся в одинаковом состоянии. Расстояние между двумя такими точками называется длиной волны и для видимого света составляет около 0,0005 мм. Частота и длина волны определяют цвет луча.

Чтобы лучше понять дальнейшие явления, представим себе волны на поверхности воды. Они бьют о берег определенное число раз в минуту, - это их частота; гребень за гребнем идет на некотором постоянном расстояния,- это длина волны. И так же, как посредине между двумя гребнями на воде лежит впадина, - между двумя точками луча, разделенными расстоянием в одну длину волны, расположится точка, отклонение которой от состояния равновесия будет противоположно отклонению двух первых точек. Принято говорить, что две точки на расстоянии длины волны находятся в одинаковых фазах, а на расстоянии полуволны - в противоположных фазах, как гребень и впадина волн на воде (фазой называется величина, характеризующая состояние колеблющейся точки в данный момент). Нужно помнить, что сходство снеговых воли и волн на воде относится лишь к закономерностям, определяющим то и другое явление, и не пытаться представать себе световой луч как механическое «дрожание» какого-то вещества, - такое расширение аналогии было незаконно и неверно.

Если на пути водяных воли лежит какое-нибудь препятствие, например камень, то можно заметить (рис. 1), что волны как бы огибают его края и заходят за камень. То же происходит и со световыми волнами. Встречая какое-либо препятствие, волны света огибают его края, отклоняясь от прямолинейного распространения; однако, так как величина препятствия всегда во много раз больше длины волны, заметить эти «загнувшиеся» лучи не так легко. Они и дают явление дифракции света - появление света там, где его не могло бы быть, если бы луч был геометрической прямой линией. Так, смотря в микроскоп на тень от острого края экрана, можно заметить светлые и темные полосы, в центре тени от маленького кружочка можно увидеть светлую точку, образованную световыми волнами, обогнувшими края кружка, и т. д.

Дифракция происходит и с лучами света звезды, входящими в объектив телескопа. Крайние лучи пучка испытывают отклонение («загибание») на краю оправы объектива и дают в фокусе телескопа маленький диск, тем меньший, чем больше диаметр объектива при данном его фокусном расстоянии. Следовательно, если источник света даже геометрическая точка в полном смысле слова, то телескоп из-за дифракции всегда покажет его в виде маленького кружочка. И эти «дифракционные диски» не дают возможности видеть действительные диски звезд.

Второе явление, существенное для нас,- интерференция света. Представим себе, что в берег бьют две системы волн равной силы и одинаковой частоты, например волны, разбегающиеся от двух орошенных в воду камней. В некоторые точки берега гребни обеих волн будут приходить одновременно, волны сложатся, и колебание воды будет сильным; в другие, наоборот, гребень одной волны будет приходить одновременно с впадиной другой, волны уничтожат друг друга, и вода останется спокойной. В промежуточных точках волны будут в разной степени усиливаться и ослабляться.

То же явление, только более осложненное, будет происходить и с световыми волнами. При некоторых определенных условиях, освещая белый экран двумя лучами одного и того же цвета, можно получить «интерференцию» света. В тех точках, где колебания приходят в одинаковых фазах, они должны складываться, и яркость света повышаться; в других точках экрана, где волны обоих лучей приходят в противоположных фазах, с разностью в полволны, они взаимно уничтожатся, и два луча, сложившись, дадут темноту.

Такой опыт сделал около 1820 г. французский физик Френель. Он поставил стеклянную призму Р (рис. 2) с очень тупым углом между источником света S и белым экраном Е. На экране вместо ровного освещения получилась картина, состоящая из чередующихся светлых и темных полос. Произошло это потому, что призма разделила пучок лучей на два одинаковых по составу пучка, как бы идущих от двух воображаемых источников, S1 и S2. Точка а находится на равном расстоянии от обоих этих источников, «гребни» и «впадины» (говоря чисто условно, пользуясь аналогией с волнами воды) в обоих лучах совпадают, колебания складываются и усиливают друг друга; будет наблюдаться яркий свет. Иначе обстоит дело в точке b: она на половину длины волны ближе к S2, чем к S1, колебания приходят в противоположных фазах, «гребни», накладываясь на «впадины», взаимно уничтожаются, колебаний нет, и наблюдается темная полоса. Рассуждая так же, найдем, что по обе стороны светлой центральной полосы а будут чередоваться светлые и темные полосы, что и подтверждается на опыте.

Так будет наблюдаться явление в том случае, если все лучи источника света имеют одну и ту же длину волны. Обычный белый свет состоит из смеси лучей различных цветов, т. е. с разными длинами волн. Лучи каждого цвета дадут свою систему светлых и темных полос, системы эти наложатся друг на друга, и на экране по обе стороны от центральной белой полосы расположатся полосы, окрашенные в разные цвета.

Каковы же диаметры звезд?

Представьте себе, что вы смотрите на шарик диаметром в 1 мм с расстояния 206 м. Рассмотреть его, конечно, не удается, диаметр шарика будет виден под углом в одну секунду дуги.

Современные большие телескопы могут при большом увеличении показать отдельно две светящиеся точки на угловом расстоянии в десятые доли секунды. Можно рассчитать, что диаметр дифракционного диска звезды у наибольшего в мире 2,5-метрового рефлектора (отражательный телескоп с диаметром главного зеркала 2,5 м), находящегося на обсерватории Моунт-Вильсон (США, Калифорния) равен теоретически О’’45. И так как даже в этот телескоп все звезды кажутся одинаковыми, - реальные угловые диски их, очевидно, еще меньше.

Угловой диаметр звезд можно оценить косвенными методами. Есть звезды, меняющие свою яркость строго периодически, вследствие того что эти звезды двойные и более яркая затмевается менее яркий спутником при каждом обороте пары вокруг общего центра тяжести. Исследование закона изменения яркости этих звезд в соединении с спектроскопическими наблюдениями скоростей их движения дает возможность определить линейные размеры обеих звезд, а отсюда, если известно расстояние до звезды, - вычислить ее угловой диаметр.

Исследуя распределение энергии в звездном спектре, можно узнать температуру звезды; измерив полное излучение, приходящее от звезды на Землю, можно вычислить угол, под которым виден диаметр звезды, даже и не зная его расстояния.

Оказалось, что видимые диаметры даже самых больших звезд всего около 0",05,- того же размера, что и дифракционный диск у 2,5-метрового рефлектора. Поэтому-то даже в величайший телескоп мира все звезды кажутся одинаковыми. Лишь с новым гигантским телескопом, который строится сейчас в Америке и будет иметь главное зеркало диаметром 5 м, можно будет увидеть, что некоторые звезды больше других, увидеть реальные диски звезд.

Дифракционный диск этого телескопа будет иметь диаметр 0",022.

Но еще 70 лет тому назад, в 1868 г., Физо указал на возможность применения явления интерференции света к измерению диаметров звезд. Основная идея метода очень проста. Представим себе, что перед призмой Френеля (рис. 2) расположен не один, а два источника света. Каждый из них дает свою систему светлых и темных полос на экране. Передвигая источники света, можно расположить их так, что светлые полосы от одного источника лягут на темные полосы от другого, и наоборот. На экране получится ровное освещение. Зная данные взятой для опыта установки, можно вычислить угол, под которым видно из центра экрана расстояние между источниками в момент исчезновения полос.

Подобным образом можно поступить и с телескопом. Если на объектив телескопа одеть крышку с двумя отверстиями (рис. 3), то лучи света, пройдя объектив, дадут прежде всего обычное изображение звезды, дифракционный диск. Но, кроме того лучи идущие от обоих отверстий, встречаясь в главном фокусе телескопа, будут интерферировать, как лучи за призмой Френеля и дадут полосы на диске звезды. Закрыв одно из отверстий, увидим, что диск останется, но полосы на нем исчезнут. Расстояния между полосами тем меньше, чем дальше друг от друга отверстия в диафрагме. Такой прибор называется звездным интерферометром.

Предположим теперь, что звезда двойная, т. е. на самом деле там две, расположенные настолько близко, что они даже в телескоп видны как одна. Каждая из звезд даст свою систему полос на диске; системы эти наложатся одна на другую, Меняя расстояние между отверстиями в диафрагме, можно подобрать его так, что полосы на диске перестанут быть видимыми: светлые полосы, даваемые одной звездой, совпадут с темными, даваемыми другой, и диск будет освещен равномерно. Зная расстояние между отверстиями в диафрагме и фокусное расстояние телескопа, можно будет вычислить угол, под которым видно расстояние между составляющими двойной звезды, хотя различить их отдельно и не удастся.

Физо сделал и следующий шаг. Рассуждения его, на самом деле несколько более сложные, можно упрощенно изложить так: если звезда не точка, а маленький диск, то ее можно представить себе как бы состоящей из двух «полудисков» и рассматривать далее каждый из них как самостоятельный источник света, дающий свою систему полос. Тогда, меняя расстояние между отверстиями в диафрагме телескопа, можно добиться исчезновения полос, равномерного освещения дифракционного диска звезды. По расстоянию отверстий в диафрагме можно вычислить расстояние между «центрами тяжести» обоих «полудисков», а отсюда по формулам геометрии найти диаметр звезды.

Идеи Физо были использованы Стефеном.

На 80-сантиметровом рефракторе обсерватории в Марселе он наблюдал интерференционные полосы от многих звезд, но ни разу не смог добиться их исчезновения. Затем работы Физо и Стефена были забыты.

Идеи эти высказал снова в 1890 г. известный американский физик Майкельсон. Пользуясь различными телескопами, он показал, что с помощью интерференции можно измерять расстояния между составляющими очень тесных двойных звезд, диаметры спутников Юпитера и т. д. Результаты хорошо совпадали с результатами обычных измерений точным микрометром. Однако астрономы не сразу обратили внимание на результаты Майкельсона. Лишь около 1920 г. эти опыты были повторены на обсерватории Моунт-Вильсон, сначала на полутораметровом, а затем на 2,5-метровом рефлекторах. Удалось измерить расстояния в некоторых очень тесных звездных парах, например расстояние между составляющими двойной звезды Капеллы, равное всего 0"",045.

Но обнаружилось, что даже при расположении отверстий диафрагмы на краях 2,5-метрового зеркала полосы на дифракционных дисках звезд не исчезают, - расстояние это еще слишком мало. Объектива или зеркала диаметром более 2,5 м тогда не существовало, нет еще и сейчас, и, казалось бы, дальше идти некуда.

Однако Майкельсон чрезвычайно просто и остроумно решил задачу, как бы искусственно увеличив размеры 2,5-метрового зеркала еще в 2,5 раза. На рис. 4 показан ход лучей в звездном интерферометре Майкельсона, расположенном на главном телескопе обсерватории Моунт-Вильсон. На стальной балке длиною 6 м, укрепленной на конце рефлектора, расположены два плоских зеркала 1 под углом 45° к оси телескопа. Лучи от этих зеркал идут к двум плоским зеркалам 2, главному вогнутому зеркалу рефлектора 3 и после отражения от выпуклого зеркала 4 и плоского 5 в окуляр 6. Встречаясь в фокусе телескопа, лучи дают ту же картину, что и при двух отверстиях в крышке на объективе, т. е. дифракционный диск и систему полос на нем. Расстояние между зеркалами может меняться от 2,5 до 6 м.

13 декабря 1920 г. давно поставленная цель была достигнута. Первой звездой, для которой удалось добиться исчезновения полос (рис. 7) при расстоянии между зеркалами интерферометра в 3 м, была альфа Ориона (Бетельгейзе). Для ее диаметра получилась величина 0",047, в хорошем согласия с теоретическими подсчетами. Тем же интерферометром были измерены видимые диаметры еще нескольких звезд.

Но даже расстояние 6 м между зеркалами интерферометра слишком мало для огромного большинства звезд. Так как для измерения диаметров звезд не важно, чтобы главное зеркало телескопа имело максимальный диаметр, а существенно расстояние между подвижными зеркалами, - в 1930 г. был построен новый интерферометр с главным зеркалом диаметром 100 см и балкой длиной 15 м (рис. 8). Этот интерферометр уже является не насадкой на телескоп, а вполне самостоятельным инструментом. С ним при помощи улучшенной методики наблюдений (наблюдалось не только расстояние, при котором полосы исчезают, но и оценивалась степень видимости полос при других расстояниях между зеркалами путем сравнения с искусственными полосами) удалось измерить диаметры довольно большого числа звезд. Часть результатов этих измерений приведена в табличке. Можно заметить, что согласие между наблюденными и вычисленными теоретически диаметрами звезд очень хорошее.

Разумеется, что сейчас могут быть измерены диаметры лишь наиболее близких к нам и очень больших звезд, - диаметры остальных звезд значительно меньше и недоступны даже 15-метровому интерферометру. В последней строке таблицы приведена Вега, одна из наиболее ярких звезд нашего северного неба. Чтобы измерить ее диаметр, пришлось бы раздвинуть зеркала интерферометра на 50 м.

В последнем столбце таблички приведены действительные диаметры звезд, причем диаметр Солнца принят за единицу. Действительные размеры звезды легко вычислить если известен ее угловой диаметр и расстояние до нее. Из этого столбца видно, как огромны некоторые звезды. Если бы, например, Антарес оказался на месте нашего Солнца, то не только орбита Земли, но и орбита Марса лежала бы внутри него (рис. 9); Марс, среднее расстояние которого от Солнца равно 228 млн. км, двигался бы внутри Антареса. Зная размеры Антареса и его массу, можно вычислить среднюю плотность его вещества. И оказывается что плотность эта в три миллиона раз меньше плотности вещества нашего Солнца.


Применение зеркал в звездном интерферометре на телескопе. Угловой диаметр Бетельгейзе оказался равным 0 05, что соответствует поперечнику 400 000 000 км.
Угловой диаметр Бетельгейзе оказался равным 0 05, что соответствует поперечнику в 400000000 км. В последнее время в обсерватории Маунт-Вильсон построен интерферометр, позволяющий раздвигать зеркала до 18 м и, следовательно, измерять углы в тысячные доли секунды.
Схема интерферометра Майкельсона. Si я Si - зеркала. Pi - разделительная пластинка. Рг - компенсационная пластинка. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения 2d cos r т К. Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла г переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.
Сферическая аберрация. Угловой диаметр кружка рассеяния обычно выражают в мил-лирадианах. На рис. 3.15 показаны зависимости углового размера сферической аберрации от размера относительного отверстия для тонких линз из различного материала и сферического зеркала.
Солнца (угловой диаметр Солнца равен ЗГ 0 01 рад.
А Когда угловой диаметр Луны больше: когда она находится вблизи зенита или вблизи горизонта.
Иногда пользуются угловым диаметром кружка рассеяния угл.
Как хорошо известно, угловые диаметры, под которыми видны звезды с Земли, так малы, что ни один имеющийся телескоп не может их разрешить. В фокальной плоскости телескопа звездный свет дает дифракционную картину, которая неотличима от той, которую давал бы свет от точечного источника, дифрагировавший на апертуре телескопа и деградировавший при прохождении через атмосферу Земли.
Иллюстрация понятия объема когерентности. Существует множество звезд, чей угловой диаметр значительно меньше углового диаметра Бетельгейзе, так что высокая степень корреляции в свете от этих звезд имеет место на гораздо больших площадях.
В отличие от Солнца, угловой диаметр которого равен 30, указанные источники Галактики имеют угловые размеры не бо - - лее З - т - З7 и могут рассматриваться как точечные.

Таким образом, можно измерить угловой диаметр источника, постепенно увеличивая интервал между двумя отверстиями до тех пор, пока не исчезнут интерференционные полосы.
Великие противостояния Марса с 1830 г. по 2035 г. Расстояние от Земли до Марса указано в астрономических единицах (а.е. и километрах. Для наблюдателей планеты основным фактором является угловой диаметр ее диска.
Схема метода Физо - Маикельсона для определения углового расстояния между звездами или углового диаметра звезд. Итак, метод позволяет определить также и угловой диаметр источника света (ср.
Схема опытов по измерению дргаметра звезд, предложенных. Итак, метод позволяет определить также и угловой диаметр источника света (ср.
Наиболее характерным примером этого рода являются звезды, угловой диаметр которых составляет малые доли секунды.
Существует множество звезд, чей угловой диаметр значительно меньше углового диаметра Бетельгейзе, так что высокая степень корреляции в свете от этих звезд имеет место на гораздо больших площадях.
Угловой диаметр 2v центрального дифракционного пятна называют также угловым диаметром дифракционной картины.
Обработка плоских изображений участков звездного неба целесообразна при небольшом угловом диаметре машинного кадра. В этом случае проективные искажения при образовании кадра незначительно искажают положения звезд на небесной сфере. Поскольку вероятность правильной идентификации увеличивается с ростом числа изображений звезд, то малые угловые размеры машинного кадра приводят к необходимости расширять диапазон светимостей анализируемых звезд. В результате значительно увеличиваются вероятности пропуска слабосветящихся ее звезд, а низкий порог по уровню яркости приводит также к росту вероятностей ложных отметок. В конечном счете малые угловые размеры машинного кадра приводят к низкой эффективности идентификации звезды, визируемой астродатчиком космического аппарата.
Иллюстрация схемы и обозначений для формулы (James and Wolf, 1991a.| Изменения, создаваемые интерференцией в аксиальной точке PQ в спектре Планка при разных значениях d. Предполагалось, что источник находится при температуре Т 3000 К и стягивает угловой полудиаметр а х 10 - рад. в точке О. Единицы измерения на вертикальной оси произвольные (James and Wolf, 199 la. Бесселя первого рода и первого порядка, 2а - угловой диаметр, который источник стягивает в средней точке О между двумя отверстиями и d - расстояние между ними, с - скорость света в вакууме.
Вдвое большая величина, или 41, сравнима с величиной 40 5 углового диаметра кажущейся орбиты звезды, наблюдавшейся Бредли.

Если вместо двух источников (двойная звезда) мы имеем источник с угловым диаметром 8, то он дает интерференционную картину, изображенную на рис. 9.14, где заштрихована наблюдающаяся полоса, а пунктирными и сплошными линиями намечены полосы, обусловленные краями источника в отдельности; заштрихованная область дает ориентировочное представление о виде полос.
Электронные плотность Ne и темп - pa Т, солнечной атмосферы. Точно в центре Галактики расположен радиоисточник Стрелсц-А, состоящий из центрального яркого источника с угловым диаметром 3 (линейный размер, как у Андромеды 8 пс), погруженного в концептрич. Центральный источник имеет сложный спектр, содержащий нетепловую компоненту.
Размеры Солнца (или Луны) можно просто связать с расстоянием до нас, измеряя угловой диаметр.
Из этого выражения видно, что для определения Т необходимо знать только температуру поверхности Солнца и угловой диаметр Солнца 2Rc / r, видимый с Земли. Этот диаметр равен 0 01 радиана, а температура поверхности Солнца составляет примерно 6000 К.
Из этого выражения видно, что для определения Т необходимо знать только температуру поверхности Солнца и угловой диаметр Солнца 2Rc / r, видимый с Земли. Этот диаметр равен 0 01 радиана, а температура поверхности Солнца составляет примерно 6000 К - По формуле (7.5) находим Г 300 К.
Юпитера н Сатурна в телескоп с сильным увеличением видны в виде дисков, что позволило измерить их угловые диаметры, а затем вычислить и линейные их значения.
Гримальди описал наблюденное им явление чередования света и тени при освещении двух рядом расположенных щелей светом Солнца (угловой диаметр Солнца равен 31 - 0 01 рад.
Mj и М2) диаметром 1 56м и с переменной базой до 14м был использован впервые для измерения углового диаметра Сириуса.
Он отмечает, что поскольку послеобраз локализуется на переднем крае фона, на котором он наблюдается, и поскольку видимый угловой диаметр его сохраняется, обычно он значительно меняет размеры в процессе движения. Когда фон удаляется, послеобраз также кажется более удаленным и поэтому (благодаря сохранению углового диаметра) значительно увеличившимся в размерах. При приближении фона происходит обратное. Колебания размеров могут достигать большого значения.
Гелиометры, которые состоят из телескопа, объектив которого разделен вдоль диаметра, и две половины могут двигаться; они используются для измерения углового диаметра Солнца и углового расстояния между двумя небесными телами.

Читателю может показаться непонятным, почему звездный интерферометр Физо, в котором используется только часть апертуры телескопа, оказывается более подходящим для измерения углового диаметра удаленного объекта, нежели методы, использующие полную апертуру. Дело в том, что нужно учитывать эффекты случайных пространственных и временных флуктуации в земной атмосфере (видение через атмосферу), о чем подробно говорится в гл.
Простейшим возможным применением звездного интерферометра Майкельсона является определение того интервала s0, при котором интерференционные полосы начинают исчезать, и, следовательно, углового диаметра удаленного источника.
Кривая видности и радиальное распределение радиояркости по диску Солнца (стрелкой отмечен край Солнца в оптике. Во время появления в 1946 г. большого солнечного пятна, когда излучение Солнца существенно возросло, Райл и Вонберг воспользовались своим прибором для определения углового диаметра радиоисточника на Солнце. Для различных расстояний между антеннами они измерили отношение максимума к минимуму лепестков, образующих интерференционную кривую. На основе этих результатов они заключили, что угловой диаметр источника составляет 1 (У. Так как это значение существенно не превышало диаметр визуально наблюдаемого солнечного пятна, они заключили, что радиоисточник относится к визуальному пятну или по крайней мере связан с ним.
Распределение интенсивности в интерференционных кольцах. В случае стеклянной пластинки толщиной 0 5 мм с показателем преломления п 1 5 первое светлое кольцо имеет угловой диаметр 21, в 8 раз превышающий угловой диаметр Солнца. Можно отметить некоторые различия между этими кольцами и кольцами, локализованными на бесконечности, которые наблюдаются в интерферометре Майкельсона.
В литературе описаны также разрядные трубки, сконструированные специально для возбуждения спектров веществ, имеющихся в очень малых количествах , и светосильные разрядные трубки с большим угловым диаметром окна для наблюдения. Для обслуживания разрядной трубки используется несложная вакуумная установка, состоящая из ротационного форвакуумного и диффузионного ртутного или масляного насосов (при форвакуумном насосе, дающем разряжение до 10 - 3 мм Hg, применение диффузионного насоса не обязательно), разрядной трубки, манометра (обычно U-образный масляный или термопарный вакуумметр) и баллона с газом. Кроме того, очень часто употребляется непрерывная очистка газа, которую обеспечивает специальная система циркуляции.
Прнзма обладает свойством давать искаженное изображение бесконечно удаленных предметов; угловой диаметр предмета в направлении, параллельном ребру призмы, естественно, не меняется, если только предмет изображается лучами, параллельными плоскости главного сечения призмы; но угловой диаметр в направлении, перпендикулярном ребру, может изменяться. Пусть dij (рис. VII.4) - угол, под которым виден бесконечно удаленный предмет; определим, под каким углом di 2 тот же предмет будет виден после призмы.
Создание когерентно-оптической установки в институте было связано с попыткой применить идею накопления сигнала для определения фигуры Меркурия путем анализа изображений, полученных во время прохождения Меркурия по диску Солнца 9 мая 1970 г. Как известно, при наблюдении астрономических объектов в телескоп неоднородности земной атмосферы обычно не позволяют достичь разрешения лучше I-2, даже если дифракционное разрешение телескопа намного лучше. Угловой диаметр Меркурия при наблюдении с Земли составляет около 10, поэтому, чтобы заметить отклонение формы диска Меркурия от круга, меньшее 10 %, необходимо преодолеть мешающее влияние земной атмосферы.
Следует обратить внимание на убывание амплитуды в случае протяженного источника. Угловой диаметр ш связан с величиной Р соотношением ш P / (V2d) / 2, где К - длина волны, ad - расстояние до Луны: v пропорционально времени, v 0 соответствует геометрической теин; / о - относительная плотность потока иа краю геометрической теин. Наблюдавшаяся 5 августа 1962 г. дифракционная картина ЗС 273 иа частоте 410 Мгц приведена иа рис. 3, в. Иммерсионная дифракционная картина от 26 октября 1962 г. иа частоте 1420 Мгц воспроизведена иа рис. 3, г. Видно, что ЗС 273 разрешается иа точечный источник и протяженную область.
Зная расстояние до Бетельгейзе, рассчитанное по параллаксу, можно найти линейный диаметр звезды. Таким способом были измерены угловые диаметры не - скольких звезд. Все они, подобно Бетельгейзе, гиганты, во много раз превосходящие Солнце. Подавляющее большинство звезд мало отличается по своему диаметру от Солнца. Постройка интерферометра с такой базой (расстоянием между внешними зеркалами) представляет собой крайне сложную техническую задачу. Кроме того, при большой базе наблюдения осложняются турбулентностью атмосферы, хотя на работе интерферометра это сказывается меньше, чем при наблюдении в телескоп. Изменения показателя преломления воздуха перед зеркалами влияют на разность фаз лучей и лишь смещают интерференционную картину, не сказываясь на ее видности, так что полосы остаются различимыми, если эти изменения происходят медленно.
В табл. 2 - 20 представлены данные об угловых размерах Солнца. Как следует из этой таблицы, средний угловой диаметр Солнца применительно к орбитальным космическим аппаратам можно принять равным 32, телесный угол диска Солнца при этом составляет примерно 7 - 10 - 5 ср.
Такой концентратор применяется для повышения температуры в рабочей зоне путем увеличения плотности падающей на него солнечной энергии. При этом участки кривой определяются величиной углового диаметра солнца, а скругления у точек а и с - неравномерностью яркости солнечного диска.
Здесь пора вспомнить, что пока мы имели дело, в сущности, лишь с наклонами фронтов парциальных плоских волн; с учетом же дифракции расходимость каждой из них вовсе не является бесконечно малой и равна 20Д / D. По этой причине следить за процессом уменьшения угловых диаметров пятен имеет смысл лишь до тех пор, пока они не сравниваются с дифракционной шириной расходимости. На последующих обходах реальная картина распределения уже не меняется, причем убыль света из дифракционного керна за счет светорассеяния компенсируется поступлением за счет сжатия пятен, образовавшихся на предыдущих обходах.
Звездный интерферометр Майкельсона позволяет определять не только угловое расстояние между компонентами двойных звезд, но и угловые диаметры не слишком удаленных одиночных звезд. Первой звездой, у которой Майкельсону удалось измерить угловой диаметр, была Бетельгейзе, относящаяся к так называемым красным гигантам.

Мййкельсона позволяет определять не только угловое расстояние между компонентами двойных звезд, но и угловые диаметры не слишком удаленных одиночных звезд. Первой звездой, у которой Майкель-сону удалось измерить угловой диаметр, была Бетельгейзе, относящаяся к так называемым красным гигантам.