Планер на солнечных батареях. Модель самолета на солнечных батареях

Планер на солнечных батареях. Модель самолета на солнечных батареях

В наше время учёные не забывают хотя бы раз в месяц упомянуть, что нефть заканчивается, газ на исходе, энергия атома опасна, и вообще, через двести лет человечество перейдёт на так как мировая экономика и производство встанут без топлива. В противовес этому в средствах массовой информации много статей о развитии технологий воздуха, воды, отходов животных и человека и другие разные варианты. Некоторые из них похожи на фантастику, иные имеют реальные технические наработки и уже вовсю используются, как, например, энергия солнца.

Солнечная энергия

Мы привыкли, что любимое светило дарит нам тепло и свет, помогает выращивать урожай, греет воду в озёрах, реках и морях. Но, помимо этого, энергия солнечных лучей может использоваться иначе. Уже несколько десятков лет назад на рынке появились калькуляторы с солнечной батарейкой. Сейчас этим никого не удивишь. Есть готовые проекты: по ним уже построены первые дома, которые обогреваются за счёт солнечной энергии и эксплуатируются в России в условиях зимы. Проект предусматривает резервное отопление, так как в наших краях солнце может закрыть тучами надолго.

Каждый обыватель может купить солнечные батареи, вот только цена очень кусается. Кроме того, дешевле получать энергию и тепло привычным способом. Однако в условиях отсутствия обычных источников энергии, например в далёких экспедициях или в космосе, солнечные батареи являются основными. В Европе жильцы частного сектора располагают их на крышах собственных домов и продают излишки электроэнергии своему же государству. А ведь Германия не самая солнечная страна. Плюс солнечной энергии ещё в том, что она возобновляемая. Хоть учёные и говорят, что Солнце не всегда будет светить, но, по сравнению с человеческой жизнью, наше светило вечно.

Самолёт на солнечных батареях

В наше время построили такое воздушное судно. Пусть оно не очень быстрое и манёвренное, зато его топливо ничего не стоит, вредных выбросов нет. расположены по всей поверхностям крыльев и самого корпуса. На испытательном перелёте самолёт преодолел 1541 км из Феникса в Даллас. Максимальная высота составляла 8200 метров, а средняя скорость - 84 км/ч.

Самолёт на пилотировал один из его создателей — Андрэ Боршерг. Этот перелёт - один из его очередных рекордов, ранее он совершил путешествие в 26 часов на этом же самолёте под названием Solar Impulse. Сейчас испытатель активно строит планы пересечь всю Америку, а потом совершить кругосветный перелёт.

Вся команда, которая создавала судно и готовила его к эксплуатации, старается сделать всё возможное, чтоб её работа максимально освещалась в средствах массовой информации. Ведь основная задача таких мероприятий - показать всему миру, что энергия солнечных лучей имеет большие перспективы и может максимально использоваться человеком.

История создания

Solar Impulse представляет собой планер с размахом крыльев в 63,4 метра, его масса - 1,5 тонны, имеет четыре электрических двигателя с общей мощностью в 7 киловатт. Предусмотрено, что освещение солнечных батарей может быть неравномерным. Больше четырёхсот кг приходится на литиевые аккумуляторы, которые заряжаются на стоянке. Любой прежний самолёт на солнечных батареях летал только за счёт подзарядки от солнца, аккумуляторы если и были, то небольшие.

Сейчас создан Solar Impulse 2, он гораздо крупнее своего предшественника, имеет больше солнечных ячеек — целых 17 тысяч. Размах крыльев - больше 70 метров. Его сделали из углеводородного волокна, чтобы уменьшить массу. Тем не менее он весит 2,3 тонны. Благодаря мощным аккумуляторам он может лететь в течение нескольких дней и ночей со скоростью от 50 до 100 км/ч.

Перспективы солнечного топлива

Существует огромное количество примеров использования солнечной энергии. Самый простой был показан ещё в советском фильме «3+2», где доктор физических наук выложил в зонтике зеркала и отражённым светом подогревал еду в котелке. Сейчас в науке развивается технология использования теплоизоляции, которая имеет поверхность, воспринимающую солнечную энергию.

По той же технологии уже выпускаются и работают установки для просушки сельскохозяйственных культур и обогрева домов. Чтобы не делать их слишком большими по площади, в поверхности нагревателей делают канавки, которые увеличивают площадь материала, воспринимающего солнечную энергию.

В регионах нашей планеты, где суровые зимы, большая часть энергии уходит именно на отопление. Для экономии энергии развивают пассивные солнечные системы, которые имеют большую площадь, обращённую к солнцу, собирают энергию и прогревают дом. Идея хороша, но сложна в исполнении. Дом должен иметь отличную изоляцию, необходимо регулировать вентиляцию, при использовании только солнечной энергии оптимальная температура в доме достигается только к середине дня, а летом в нём слишком жарко.

Самолёт на солнечной энергии является прекрасным примером нераскрытых возможностей. На нём установлен некий прототип пассивной системы. Но существуют и активные. В них нагревается вода или воздух. Уже потом они, как теплоносители, поступают в дом. Их проще контролировать, можно устанавливать на уже построенные дома, но их эффективность недостаточна для суровых зим России. Однако в гибридных системах при совмещении с привычными источниками энергии активные солнечные системы позволяют экономить до 60 процентов энергоносителей.

Солнцемобиль

Самолёт на солнечных батареях - это не единственный современный транспорт на таком типе энергии. Существует солнцемобиль, и даже не один. Каждый год в Швейцарии проводится соревнование между такими машинами, называется оно «Тур де сол». Гонка длится шесть суток. Каждый день участникам надо преодолеть от 80 до 150 км по дорогам Швейцарии и Австрии.

Несколько лет назад такой солнцемобиль совершил проезд через Россию. Оказалось, что его колёса не могут проехать по нашим просёлочным дорогам, и движение шло по магистралям. Россия велика, и не везде достаточно солнца. Но, несмотря на все трудности, солнцемобиль завершил свой маршрут. Максимальная скорость такого транспорта составляет 170 км/ч. Использование солнечной энергии в виде солнцемобиля получило ещё одно положительное подтверждение. В Европе некоторые модели уже вошли в серию.

Солнечные батареи. Цена. Производство

Солнечные батареи, по сути, являются фотоэлементами, которые преобразуют солнечную энергию. В фильме «Марсианин» они наглядно показаны, когда главный герой после катастрофы очищает их от пыли. В России они не пользуются популярностью и не производятся. Обычный минимальный частный заказ формируют на сумму от 9 тыс. рублей. Сами солнечные батареи, цена которых колеблется в зависимости от размеров товара, стоят от полутора тысяч рублей до 15 тыс.

Использование в России

В нашей стране солнце светит регулярно, но не очень сильно. Примеры использования солнечной энергии, изложенные выше, могут быть применены и на просторах нашей страны. К сожалению, эксплуатация батарей окупится только в долгосрочной перспективе. Но если учитывать не только количество денег, но и экономию природных ресурсов, то можно уверенно сказать, что эту технологию необходимо максимально развивать и активно использовать.

Американская компания Titan Aerospace продемонстрировала прототип своего БПЛА на солнечных батареях, который, по заявлениям производителя, сможет находится в воздухе до 5 лет. Данный аппарат будет курсировать на высоте порядка 20 тысяч метров и вести фотосъемку поверхности или выполнять роль атмосферного спутника. Разработчики из Titan Aerospace готовы поднять в воздух первый свой летательный аппарат уже в 2014 году. Стоит отметить, что у их концепции может оказаться многообещающей будущее.

Традиционные космические спутники сегодня вполне неплохо справляются со своими обязанностями, однако у них существует ряд недостатков. К примеру, сами спутники стоят достаточно дорого, их вывод на орбиту также обходится в немалую сумму денег, к тому же их нельзя вернуть назад в том случае, если они уже введены в строй. Но американская компания «Titan Aerospace» выступает с альтернативой космическим спутникам, которая будет избавлена от всех этих проблем. Беспилотный высотный летательный аппарат под названием «Solara» предназначен для работы в роли «атмосферного спутника» – то есть для совершения автономных полетов в верхних слоях атмосферы Земли в течение достаточно длительного времени.


В настоящее время компания работает над двумя моделями беспилотника Solara. Первая из них Solara 50 обладает размахом крыльев в 50 метров, ее длина составляет – 15,5 метров, вес – 159 кг., полезная нагрузка – до 32 кг. Более массивный Solara 60 обладает размахом крыльев в 60 метров, он может брать на борт до 100 кг. полезной нагрузки. Хвост аппарата и верхние крылья покрыты 3 тысячами солнечных элементов, которые позволяют генерировать до 7 кВт*ч энергии в течение суток. На своей крейсерской высоте в 20 000 метров атмосферный спутник будет находиться выше уровня облаков, а значит он не будет подвержен влиянию погодных факторов. Собранная энергия будет запасаться в бортовых литий-ионных батареях, для того чтобы питать двигатель, автопилот, системы телеметрии и сенсоры в ночное время. Предполагается, что атмосферный спутник сможет работать полностью в автономном режиме, находясь в верхних слоях атмосферы Земли до 5 лет, а затем вернется на землю, так что его полезный груз можно будет вернуть, а сам аппарат – разобрать на запасные части.

Сообщается, что крейсерская скорость беспилотного аппарата будет составлять порядка 100 км/ч, а оперативный радиус – более 4,5 млн. километров. По мнению специалистов, беспилотник по большей части будет совершать полеты кругами над определенным участком земной поверхности. Такое применение включает в себя отслеживание объектов, наблюдение, картографирование в реальном масштабе времени, а также мониторинг погоды, сельскохозяйственных посевов, леса, мест происшествий, и вообще практически любых задач, с которыми может справиться обыкновенный низковысотный спутник.

Вдобавок ко всему специалисты Titan Aerospace говорят о том, что каждый беспилотник сможет обеспечивать сотовое покрытие сразу 17 тысяч квадратных километров земной поверхности, поддерживая связь более чем со 100 наземными башнями. В настоящее время американцы уже провели испытания уменьшенных моделей атмосферных спутников и надеются выпустить полноразмерные версии аппаратов Solara 50 и 60 позднее в 2013 году.

По предварительным оценкам экспертов, мультиспектральная съемка земной поверхности с использование аппаратов Solara обойдется всего в 5 долларов за квадратный километр: это сразу в 7 раз ниже расценок на спутниковые данные, обладающие сопоставимым качеством. Помимо этого, такие беспилотники смогут обеспечить услугами связи местность в радиусе 30 км., что вполне сопоставимо с современным мегаполисом наподобие Лондона или Москвы с большей частью их пригородов. В нормальных условиях на территории мегаполисов в подобной системе пока нет никакой необходимости, но в компании полагают, что их беспилотники могут пригодиться либо в случае возникновения экстренных ситуациях, либо в слаборазвитых государствах. В Titan Aerospace говорят о том, что их беспилотными аппаратами Solara уже заинтересовалась известная компьютерная корпорация Google, которая может использовать их в рамках собственного проекта Internet Africa.


Применение мобильных высотных аппаратов (аэростатов или самолетов) для ретрансляции радиосигналов было предложено уже достаточно давно, но практическое применение данной идеи было затруднено отсутствием подходящих источников питания. Аккумуляторы обладали слишком большим весом, а солнечным батареям не хватало КПД. Первые экспериментальные самолеты, оснащенные солнечными батареями, были спроектированы и построены НАСА в 1990-е годы, именно тогда данные летательные аппараты и получили неофициальное обозначение – «атмосферные спутники».

На сегодняшний день две вещи укрепляют Solara в роли атмосферного спутника. Первое – это высота его полета. Аппарат предназначен для полетов на высоте более 20 000 метров, что позволяет ему находиться практически выше всех возможных атмосферных явлений. Аппарат нависает над облаками и разнообразными погодными условиями, где окружающая среда и ветер, как правило, достаточно стабильны или, по крайней мере, очень предсказуемы. Находясь на такой высоте, в поле зрения беспилотника попадает сразу порядка 45 000 квадратных километров земной поверхности. Поэтому базовая станция сотовой связи, установленная на Solara, смогла бы заменить 100 таких станций на поверхности Земли.

Вторая очень важная вещь заключается в том, что аппарат работает от солнечной энергии. Все доступные поверхности на крыльях и хвосте беспилотника покрыты специальными солнечными панелями, а литий-ионные батареи смонтированы в крыльях. В течение дня Solara в состоянии сгенерировать внушительное количество энергии, которой вполне достаточно для того, чтобы оставить в батареях заряд, которого хватило бы на всю оставшуюся ночь. Так как беспилотный летательный аппарат на солнечных батареях не нуждается в дозаправке, он может находиться в воздухе до 5 лет. В это время он может либо кружить над одним местом, либо (если вы хотите, чтобы аппарат совершал дальние полеты) получить возможность пролететь расстояние порядка 4 500 000 километров с крейсерской скоростью чуть меньше 60 узлов (около 111 км/ч). При этом пятилетний срок полета аппарата обусловлен лишь жизненным циклом некоторых его компонентов, поэтому существуют все предпосылки к тому, чтобы данный беспилотник мог находиться в небе существенно дольше.


Немаловажное значение играет и возвращаемость аппарата. Если что-то пойдет не так, вы всегда сможете вернуть его назад, сохранив полезный груз и аппарат. Также Solara обещает стать гораздо дешевле классических спутников, хотя компания-изготовитель пока что не торопится раскрывать цены на свою новинку. Запуск подобных аппаратов в серийное производство открывает перед человечеством новые возможности вроде регионального Интернета или Google Maps с отображением карт в реальном времени. При этом появление беспилотника Solara не знаменует собой конца эры космических спутников, хотя и предоставляет нам выбор большего числа альтернатив.

Источники информации:
-http://gearmix.ru/archives/4918
-http://aenergy.ru/4126
-http://lenta.ru/news/2013/08/19/solar
-http://nauka21vek.ru/archives/52274

May 12th, 2013

Лето 2010 года навсегда войдет в историю авиации. Впервые пилотируемый самолет на солнечных батареях совершил беспосадочный полет длительностью более суток. Уникальный прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIA — детище швейцарской компании Solar Impulse и ее бессменного президента Бертрана Пикара.

В своем послании, размещенном на сайте компании после успешных испытаний летательного аппарата , Пикар отмечал: «До этого дня мы не могли по-настоящему рассчитывать на чье-либо доверие. Теперь же мы действительно можем показать всему политическому и экономическому миру, что эта технология работает».

Ранним утром 7 июля благодаря энергии, вырабатываемой 12 тысячами солнечных элементов , установленных па крыле длиной более 64 метров (вполне сравнимо с габаритами лайнера Airbus А340), необычного вида одноместный самолет весом в полторы тонны поднялся с аэродрома в Пайерне (Швейцария). За штурвалом сидел один из основателей , 57-летний швейцарский пилот и бизнесмен Андре Боршберг.

«Это был самый удивительный полет в моей жизни, — заметил он после приземления. — Я просто сидел и смотрел, как уровень заряда батареи поднимается с каждым часом, и гадал, хватит ли емкости на всю ночь. А в результате пролетал 26 часов без единой капли топлива и какого-либо загрязнения окружающей среды!»

Не первый самолет на солнечной энергии , построенный человеком, но первый, преодолевший границу между днем и ночью с пилотом на борту.

Модели СОЛНЕЧНЫХ САМОЛЕТОВ начали появляться в 1970-х годах с выходом на рынок первых доступных по цене фотоэлектрических элементов, а в 80-е начались и пилотируемые полеты. Американская команда под руководством Пола Маккриди создала самолет Solar Challenger мощностью 2,5 кВт, который совершал впечатляющие многочасовые полеты. В 1981 году ему удалось преодолеть Ла-Манш. А в Европе Гюнтер Рохельт из Германии поднялся в небо на собственной модели Solair 1, оснащенной двумя с половиной тысячами ячеек общей мощностью около 2,2 кВт.

В 1990 году американец Эрик Реймонд пересек Соединенные Штаты на своем Sunseeker. Впрочем, на путешествие с двадцатью остановками ушло более двух месяцев (121 час полета), а самый длинный отрезок насчитывал около 400 километров. Весила модельлетательного аппарата всего 89 килограммов и была оснащена кремниевыми солнечными панелями .

В середине 90-х сразу несколько подобных самолетов приняли участие в конкурсе «Berblinger»: перед ними стояла задача выйти на высоту в 450 метров и продержаться на энергии солнца порядка 500 Вт на квадратный метр крыла. Приз в 1996 году получила модель профессора Войта-Ницшманна из университета Штутгарта, чей Icare II имел 25-метровое энергетическое крыло площадью 26 кв. метров.

В 2001 году «солнечный» беспилотник компании AeroVironment под названием Helios, разработанный специально для НАСА и имевший размах крыла более 70 метров, сумел подняться на высоту более 30 километров. Двумя годами позже он попал в зону турбулентности и пропал где-то в Тихом океане.

В 2005 году небольшой беспилотник с размахом крыла около 5 метров Алана Коккони и его компании AC Propulsion впервые успешно осуществил полет длительностью более 48 часов. За счет энергии, накопленной в дневное время, летательный аппарат был способен и на ночной полет. Наконец, в 2007-2008 годах англо-американская компания QuinetiQ осуществила успешные полеты своего летательного аппарата Zephyr продолжительностью 54 и 83 часа. Машина весила около 27 кг, размах крыла составлял 12 м, а высота полета превышала 18 км.

Проект самолета на солнечных батареях Solar Impulse вряд ли сумел бы выбраться из пеленок чертежей и набросков, если бы не энергия неутомимого Бертрана Пикара — врача, путешественника, бизнесмена и авиатора-рекордсмена. Впрочем, похоже, помогли и гены.

Дед инноватора Огюст Пикар — знаменитый физик, друг Эйнштейна и Марии Кюри, один из пионеров авиации и подводного дела, изобретатель первого глубоководного аппарата и стратостата. Преодолев на воздушном шаре 15-километровую высоту в начале 30-х, он стал первым человеком в мире, собственными глазами увидевшим кривизну поверхности земного шара.

Затем Огюста потянуло вниз, и изобретатель построил глубоководный аппарат, который назвал батискафом. После нескольких совместных погружений его сын Жак Пикар настолько увлекся исследованием тайн Мирового океана, что стал одним из первопроходцев, побывавших на дне Марианской впадины (глубина 11 км.). Затем, взяв за основу работы отца, Жак построил первую в мире субмарину для туристов, а также мезоскаф для исследования Гольфстрима.

Благодаря отцу Бертран Пикар, родившийся в 1958 году, еще в детстве получил уникальную возможность лично познакомиться с выдающимися людьми, во многом определившими его будущее: знаменитым швейцарским пилотом-спасателем Германом Гейгером, с которым он совершил первый перелет через Альпы, дайвером-рекордсменом Жаком Майолем, учившим его погружению во Флориде, одним из столпов мировой космонавтики Вернером фон Брауном, познакомившим его с астронавтами и сотрудниками NASA.

В 16-летнем возрасте, возвратившись из Флориды после очередного практического курса глубоководных погружений, Бертран совершил свое первое воздушное путешествие, открыв для себя дельтаплан. Стоит ли удивляться, что именно он вскоре стал одним из пионеров этого вида спорта в Европе. Спустя годы Пикар не только стал основателем Швейцарской федерации дельтапланеризма и профессиональным инструктором, но и испробовал все, что только возможно: воздушную акробатику, запуск с воздушного шара, парашютный спорт. Несколько раз Пикар становился чемпионом Европы в этом виде спорта, наконец, он был первым, кто перелетел швейцарско-итальянские Альпы на мотодельтаплане.

Незаметно «воздушное» хобби стало для него еще и профессиональной лабораторией. Заинтересовавшись поведением людей в экстремальных ситуациях, Пикар поступил на отделение психиатрии и через несколько лет получил докторскую степень медицинского факультета университета Лозанны в области психотерапии, после чего открыл собственную практику. Предметом особого интереса для Бертрана стали техники медицинского гипноза: недостающие знания он получал как в университетах Европы и США, гак и у последователей даосизма в Юго-Восточной Азии.

Именно этот интерес снова вернул Пикара в небо. В 1992 году компания Chrysler устроила первую в истории трансатлантическую гонку на воздушных шарах, получившую название Chrysler Challenge. Бельгийский авиатор Вим Верштратен пригласил Пикара в качестве второго пилота — он был уверен, что наличие па борту психотерапевта, владеющего практикой гипноза, может оказаться неплохим преимуществом перед остальными командами. Так и получилось. Экипаж Верштратена и Пикара легко выдержал марафон и выиграл историческую гонку, приземлившись в Испании посте пятидневного перелета длиной в пять тысяч километров.

Для Пикара полет стал не просто откровением, а еще и новым способом взаимодействия с природой. После 18 лет полетов на дельтаплане у него появилась новая мечта — облететь весь мир без мотора и руля, положившись на волю ветра.

И мечта сбылась. Пусть и не с первой попытки. Спонсорами выступили швейцарский производитель часов Breitling и Международный олимпийский комитет. 12 января 1997 года, после трех лет подготовки, воздушный шар под названием Breitling Orbiter взлетел с аэродрома в Швейцарии, но из-за технических неполадок уже через шесть часов приземлился. Breitling Orbiter 2 отправился в полет в феврале 1998 года, но снова не добрался до точки назначения. На этот раз остановка произошла в Бирме, после того как китайские власти отказали Пикару в предоставлении воздушного коридора. Этот полет стал самым длительным путешествием на воздушном шаре в истории (более девяти дней), но цель все еще не была достигнута.

Наконец, третий шар покинул Швейцарию в марте 1999 года и приземлился в Египте после непрерывного полета длительностью почти в 20 суток и протяженностью более 45 тысяч километров. Своим беспрецедентным путешествием Пикар побил семь мировых рекордов, заработал несколько почетных научных званий и вошел в энциклопедии наряду со знаменитыми отцом и дедом.

Breitling Orbiter 3 разместился в Смитсоновском музее воздухоплавания и космонавтики в США, а Бертран Пикар написал несколько книг и стал желанным гостем на многочисленных лекциях и семинарах.

В 2003 году неутомимый Пикар объявил о новом, еще более амбициозном начинании, взявшись за создание пилотируемогосамолета на солнечных батареях , способного облететь весь земной шар. Так появился проект Solar Impulse .

Партнером Пикара и незаменимым СЕО компании стал швейцарский пилот и бизнесмен Андре Боршберг. Он родился в Цюрихе, закончил инженерный факультет Федерального политехнического института в Лозанне (EPFL), получил в легендарном Массачусетском технологическом институте степень в области менеджмента, и с тех пор накопил огромный опыт в качестве основателя и управляющего самых разных бизнес-проектов. Кроме того, с ранних лет Андре увлекался авиацией — учился в школе ВВС Швейцарии и получил не один десяток лицензий, дающих право профессионального управления самолетами и вертолетами всех мыслимых категорий.

Пять лет Боршберг проработал в одной из крупнейших консалтинговых компаний мира McKinsey, после чего основал собственный венчурный фонд, вывел в свет две компании в области высоких технологий и создал благотворительный фонд.

В 2003 году в Лозанне Пикар и Боршберг провели предварительные исследования, подтвердившие принципиальную инженерную возможность реализовать концепцию Пикара. Расчеты подтверждали, что создать летательный аппарат на солнечных батареях теоретически возможно. В ноябре 2003 года проект был официально запущен, и начались разработки прототипа.

Начиная с 2005 гола в Королевском институте метеорологии в Брюсселе моделировались пробные виртуальные полеты модели самолета в реальных условиях аэропортов Женевы и Цюриха. Главной задачей был расчет оптимального маршрута, ведь долго находиться под облаками, закрывающими солнце, СОЛНЕЧНЫЙ САМОЛЕТ не мог. И наконец, в 2007 году началось изготовление самолета.


В 2009 году первенец HB-SIA был готов к испытательным полетам. В процессе создания конструкции перед инженерами стояли две основных задачи. Нужно было минимизировать вес летательного аппарата , одновременно добиваясь максимальной энерговооруженности и эффективности. Первая цель была достигнута за счет использования углеродного волокна, специально разработанной «начинки» и путем избавления от всего лишнего. К примеру, кабина пилота не имела системы обогрева, так что Боршбергу пришлось использовать специальный термокостюм.

Главным, по попятным причинам, стал вопрос получения, накопления и оптимального расходования солнечной энергии. В типичный полдень каждый квадратный метр земной поверхности получает около тысячи ватт или 1,3 «лошадиных силы тепла». 200 квадратных метров фотоэлементов с 12-и % КПД вырабатывают около 6 киловатт энергии. Много ли это? Скажем так, примерно столько же было в распоряжении легендарных братьев Райт в 1903 году.

Па поверхности крыла СОЛНЕЧНОГО САМОЛЕТА было смонтировано более 12 тысяч ячеек. Их эффективность могла бы быть и выше — на уровне тех панелей, что устанавливаются па МКС. Но более эффективные ячейки обладают и большим весом. В невесомости это не играет роли (скорее уж — при подъеме энергетических ферм на орбиту при помощи космических «грузовиков»). Однако СОЛНЕЧНЫЙ САМОЛЕТ Пикара должен был продолжать полет ночью, используя накопленную в аккумуляторах энергию. И вот тут каждый липший килограмм играл критически важную роль. Именно фотоэлементы оказались самым тяжелым компонентом машины (100 килограммов, или около четверти веса летательного аппарата), так что оптимизация этого соотношения стала самой сложной задачей для команды инженеров.

Наконец, на СОЛНЕЧНЫЙ САМОЛЕТ установили уникальную бортовую компьютерную систему, оценивающую все параметры полета и предоставляющую необходимую информацию пилоту, а также наземной команде. В общей сложности инженеры Solar Impulse в процессе реализации проекта создали около 60 новых технологических решений в области материалов и солнечной энергетики.

В 2010 году начались первые и весьма успешные тестовые полеты, а уже в июле Андре Боршберг совершил свой исторический круглосуточный полет.

«К утру в батареях оставалось еще около 10 процентов заряда, — рассказывал воодушевленный Боршберг. — Это прекрасный и совершенно неожиданный для нас результат. Наш самолет размером с авиалайнер и весит как автомобиль, но потребляет энергии не больше, чем мопед. Это начало новой эры, причем не только в авиационной индустрии. Мы показали потенциал возобновляемой энергии: если уж мы можем на ней летать, то способны и на многие другие вещи. С помощью новых технологий мы можем позволить себе сохранить привычный уровень жизни, но потреблять гораздо меньше энергии. Ведь пока что мы слишком зависимы от двигателей внутреннего сгорания и цен на ресурсы!»

HB-SIA - технические данные прототипа

  • Высота полета — 8 500 м
  • Наибольшая масса — 1 600 кг
  • Крейсерская скорость — 70 км/ч
  • Минимальная скорость — 35 км/ч
  • Размах крыла — 63,4 м
  • Площадь крыла — 200 кв.м
  • Длина — 21,85 м
  • Высота — 6,4 м
  • Мощность силовой установки — 4×7,35 кВт
  • Диаметр винтов силовой установки — 3,5 м
  • Масса аккумуляторов — 400 кг
  • КПД солнечных батарей (11 628 монокристаллов) - 22,5%

Имеет ли солнечная авиация будущее? Разумеется, обещает Боршберг. В 1903 году братья Райт были уверены, что пересечь Атлантику на самолете невозможно. А спустя 25 лет Чарльз Линдберг сумел долететь из Нью-Йорка в Париж. Еще столько же лет потребовалось на создание первого 100-местного авиалайнера. Команда Пикара и Боршберга находится только в начале пути, максимальная скорость рабочего прототипа — не более 70 километров в час. Но первый шаг уже сделан.

Впрочем, в Solar Impulse уже знают, что будет дальше. В 2012-2013 годах прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIB с обновленным оборудованием и постоянным давлением в кабине пилота должен совершить первое кругосветное путешествие на «солнечном крыле». Размах несущей поверхности составит около 80 метров — больше, чем у любого современного авиалайнера. Ожидается, что полет пройдет на высоте 12 километров. Правда, он не будет непрерывным. Для смены экипажа из двух пилотов потребуется пять посадок. Ведь полет при все еще невысокой линейной скорости займет более трех-четырех суток.

Как бы то ни было, проект Пикара вселяет оптимизм. Возможно, через пару десятилетий авиакомпании, наконец, перестанут повторять сакраментальную мантру о том, что скоро «нефть кончится». Кончится? Ну, и отлично. Будем летать не на керосине, а на солнечной энергии!

А я вам еще напомню про , а так же узнайте из каких кубиков складывалась Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Второй версии бескомпромиссного электрического самолёта на солнечных батареях, способном пролететь несколько суток, пользуясь лишь энергией солнца. Сегодня я расскажу о более простом и приземлённом (насколько это слово можно употребить по отношению к самолёту), но тем гораздо более интересном глайдере Sunseeker Duo.

Sunseeker Duo на испытаниях в апреле 2014 года.
Команда Solar Flight и её лидер, Эрик Рэймонд, создают уже не первый электрический планер на солнечных батареях. Сначала был Sunseeker I в 1990, потом Sunseeker II в 2005, и теперь двухместный Sunseeker, третья итерация планера. Это первый в мире двухместный электрический самолёт на солнечных батареях. С начала постройки планера в октябре 2012 до первого тестового полёта в декабре 2013 года прошло чуть меньше полутора лет.



Для улучшения аэродинамики шасси сделано убирающимся.
После первого тестового полёта на планере без электрического оборудования, Solar Flight проработала и оттестировала все оставшиеся аспекты функционирования электрического глайдера: мониторинг аккумуляторного модуля, мотор, пропеллер, убирающееся шасси. За время безмоторных полётов была обнаружена некоторая нестабильность, ставящая вопрос о необходимости дополнительных солнечных батарей на горизонтальном стабилизаторе. Сейчас же Solar Flight говорит, что самолёт очень стабилен как на земле, так и в воздухе, и превосходит предыдущий Sunseeker II во всех аспектах.


В процессе создания крыла Sunseeker Duo.
"Современные литиевые батареи имеют в 7 раз большую ёмкость, чем никель-кадмиевые, которые мы использовали на Sunseeker I", - вспоминает Рэймонд, - "Когда мы первый раз делали наброски планера, мы даже не могли себе представить солнечные батареи с большей, чем 20% эффективностью. Эти технологии - мечты, воплотившиеся в реальности."


В электрическом самолёте настолько тихо, что гарнитура для общения не нужна.
В ходе первого полёта Sunseeker Duo планировал без мотора на скорости 50-140 км/ч и поднимался при включённом моторе со скоростью 65-70 км/ч. И даже в этот момент не требовалась гарнитура для общения между людьми в кабине, электрические двигатели намного тише бензиновых. Несмотря на огромные крылья, Sunseeker Duo вполне способен на некоторые акробатические фигуры, хотя бы ту же петлю. После завершение фазы тестирования, команда планирует совершить серию перелётов на планере по всему миру для демонстрации достижений самых последних технологий.


Приборная панель Sunseeker Duo.
Что касается характеристик глайдера, благодаря широкому применению композитов, он получился очень лёгким. Вес самого самолёта всего 280 килограмм, к которым можно добавить 200 кг полезной нагрузки. Размах крыльев Sunseeker Duo - 22 метра. Электрический мотор имеет номинальную мощность в 20 кВт и пиковую 25 кВт. 1510 солнечных элементов, закрывающих почти всю верхнюю поверхность самолёта, могут давать в сумме около 5 кВт энергии.


В качестве солнечных батарей используются кремниевые
элементы Sunpower с эффективностью почти 23%.

Что касается типа используемых элементов, как и в Solar Impulse 2, использовались 22.8% элементы производства Sunpower. Вместо GaAs, используемого раньше на всех экспериментальных самолётах настало время дешёвого кремния. Эффективность монокристаллического кремния выросла настолько, что становится уже достаточно такой мощности модулей, а при цене на порядки меньшей, чем у GaAs модулей, выбор становится очевидным, даже на экспериментальных проектах с хорошим финансированием.


Как и у многих обычных глайдеров, крылья у Sunseeker Duo складываются.
Точная ёмкость батарей не сообщается, но используется 300-вольтная система из 72 аккумуляторов, на которой можно 20 минут крутить мотор на максимальной мощности, что даёт оценку ёмкости батарей в 8 кВтч. Если крутить мотор по максимуму, планер может достигать 80 км/ч, а планируя с потерей высоты он будет разгоняться до 160 км/ч, поэтому обычно на моторе набирают высоту, а потом медленно планируют, накапливая свежий заряд за это время.


С полностью сложенными крыльями Sunseeker Duo легко
перевозить в трейлере по дорогам общего пользования.

Создатели заявляют, что на Sunseeker Duo можно летать вдвоём на солнечной энергии в течении 12 часов и более. И нет никаких оснований им не доверять, потому что характеристики самолёта вполне это позволяют. Но что ещё более важно, на создание ушла сотня миллионов долларов, а команда Solar Flight была ограничена несколькими сотнями тысяч. И этого оказалось достаточно, чтобы создать гораздо более практичный самолёт.


Elektra One в небе над Каннами, Франция.
Как когда-то начали появляться электрические планеры в дополнении к бензиновым, я думаю, скоро начнут появляться и планеры на солнечных батареях. Не экспериментальные, а более массовые, свободно продающиеся модели. Если посмотреть на современный электрический глайдер, например, Pipistrel Taurus Electro G2 , который хоть и имеет значительно меньший размах крыльев, но тоже двухместный, с электромотором, и весит чуть больше 300 кг. Даже если увеличить размах крыльев и добавить солнечные батареи, его масса вырастет не значительно. Особенно, если учесть, что без широкого применения композитов двухместные глайдеры весят за 600 килограмм, и на них тоже летают.

Первый полёт Sunseeker Duo с установленной электрикой.
Конечно, электрический планер с солнечными батареями это не чистый спорт, который предлагают безмоторные планеры, но зато он даёт возможность самостоятельно взлетать с земли. И преодолевать большие расстояния на нём проще. К тому же, если вопрос только в моторе, бензиновые планеры появились очень давно и прочно заняли свою нишу моторных глайдеров.

Источник: https://www.kp.ru/daily/26676/3699473/

Аппаратами на солнечных батареях сегодня никого не удивишь. Тем не менее первый тестовый полет стратосферного самолета SolarStratos на солнечной энергии, который состоялся 5 мая, можно назвать знаменательным событием.

Вы спросите, чем этот швейцарский SolarStratos отличается от своего собрата солнечного планера , известного тем, что он за год обогнул земной шар, сделав 16 посадок? Или от аппарата на солнечной тяге Федора Конюхова , который намерен облететь на нем Землю без посадки за 120 часов?

Отличие в том, что SolarStratos рассчитан на бОльшую высоту. Если Федор Конюхов планирует забраться на 16 километров вверх, то стратосферный самолет швейцарцев предназначен для полетов на высоте 25 километров и выше. Невесомости там еще нет, однако специалисты называют эти слои стратосферы уже ближним космосом. Освоение этой области считается очень перспективным направлением. Дело в том, что здесь можно запускать атмосферные спутники связи, которые в несколько раз дешевле космических. Или спутники наблюдения, они не только будут экономить деньги, но и давать более точную информацию. Ведь с высоты в 20-30 километров можно точнее определить, например, границы лесного пожара, чем с околоземной орбиты (свыше 160 км).

Кстати, не так давно Россия приступила к тестированию атмосферного спутника на солнечных батареях «Сова». Но это небольшой беспилотник весом 12 килограмм и размахом крыла 9 метров.

А SolarStratos — это первый в мире полноценный двухместный стратосферный самолет. Он весит 450 килограммов, длина фюзеляжа 8,5 метров, размах крыльев равен 25 метрам. Причем 22 квадратных метра поверхности занимают солнечные панели.

Весной Федеральное управление гражданской авиации Швейцарии выдало руководителю проекта SolarStratos Рафаэлю Домьяну разрешение на проведение летных испытаний. И в начале мая чудо-самолет совершил первый полет. Летчик-испытатель Дамиан Хишье за время короткого 7-минутного полета поднял аппарат на скромную высоту — 300 метров. Подниматься в стратосферу самолет начнет, когда конструкторы убедятся, что аппарат работает идеально.

Проблема в том, что летчик не имеет права на ошибку: чтобы максимально облегчить самолет, инженеры не стали оборудовать кабину системами поддержания нормального давления и температуры. Чтобы выжить при температуре минус 56 градусов и атмосферном давлении в десятки и сотни раз ниже, чем на поверхности Земли, оба летчика надевают скафандры. Что интересно: швейцарцы среди разных вариантов выбрали российский скафандр «Сокол», он не предназначен для выходов в космос, но позволяет выдерживать условия межзвездного пространства. Единственный минус — это невозможность использования парашюта в случае нештатной ситуации. Поэтому к безопасности стратосферного самолета предъявляются повышенные требования.

Мы очень довольны, что можем продемонстрировать работающую технологию, которая позволяет достичь большего, чем аппараты на ископаемых видах топлива, — заявил Рафаэль Домьян. — Электрические и солнечные автомобили вытеснят двигатели внутреннего сгорания с рынка в XXI веке. А наши самолеты могут летать на высоте 25000 метров и это открывает двери для возможностей коммерческой электрической и солнечной авиации в пределах ближнего космоса.

Домьян рассчитывает, что полеты в стратосферу можно будет продавать туристам.

ТТХ SolarStratos

  • Длина – 8,5 метра
  • Размах крыльев – 24,9 метра
  • Вес – 450 килограммов
  • Запас автономности – более 24 часов
  • Привод – 4-лопастной пропеллер, диаметр – 2,2 метра
  • Мотор – электрический мощностью 32кВт,
  • КПД мотора – 90%
  • Количество пилотов – 2
  • Питание – солнечная энергия
  • Площадь солнечной батареи – 22 квадратных метра