Электрические схемы бесплатно. Схема частотомера из калькулятора, журнал радио

Электрические схемы бесплатно. Схема частотомера из калькулятора, журнал радио

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):

Конструирование этого измерительного прибора (рис. 46) должно стать для вас обобщением, сведением воедино и практическим применением знаний и навыков по основам цифровой техники. Прибор позволит измерять синусоидальные гармонические и импульсные электрические колебания частотой от единиц герц до 10 МГц и амплитудой от 0,15 до 10 В, а также считать импульсы сигнала.

Рис. 46. Внешний вид цифрового частотомера
Рис. 47. Структурная схема частотомера

Структурная схема описываемого частотомера показана на рис. 47. Его образуют: формирователь импульсов сигнала измеряемой частоты, блок образцовых частот, электронный ключ, двоично-десятичный счетчик импульсов, блок цифровой индикации и управляющее устройство. Питается частотомер от сети переменного тока напряжением 220 В через двухполупериодный выпрямитель со стабилизатором выпрямленного напряжения (на рис. 47 не показаны).

Действие прибора основано на измерении числа импульсов в течение определенного-образцового-интервала времени. Исследуемый сигнал подают на вход формирователя импульсного напряжения. На его выходе формируются электрические колебания прямоугольной формы, соответствующие частоте входного сигнала, которые поступают на электронный ключ. Сюда же через управляющее устройство, открывающее ключ на определенное время, поступают и импульсы образцовой частоты. В результате на выходе электронного ключа появляются пачки импульсов, которые далее следуют к двоично-десятичному счетчику. Логическое состояние двоично-десятичного счетчика, в котором он оказался после закрывания ключа, отображает блок цифровой индикации, работающий в течение времени, определяемого управляющим устройством.

В режиме счета импульсов управляющее устройство блокирует источник образцовых частот, двоично-десятичный счетчик ведет непрерывный счет поступивших на его вход импульсов, а блок цифровой индикации отображает результат счета.

Принципиальная схема частотомера показана на рис. 48. Многие узлы в нем вам уже знакомы. Поэтому рассмотрим более подробно лишь новые цепи и узлы прибора.

Формирователь импульсного напряжения представляет собой усложненный триггер Шмитта, собранный на микросхеме К155ЛД1 (DD1). Резистор R1 ограничивает входной ток, а диод VD1 защищает микросхему от перепадов входного напряжения отрицательной полярности. Подбором резистора R3 устанавливают нижний (наименьший) предел напряжения входного сигнала.

С выхода формирователя (вывод 9 микросхемы DD1) импульсы прямоугольной формы поступают на один из входов логического элемента DD11.1, выполняющего функцию электронного ключа.

В блок образцовых частот входят: генератор на элементах DD2.1-DD2.3, частота импульсов которого стабилизирована кварцевым резонатором ZQ1, и семиступенный делитель частоты на микросхемах DD3-;DD9. Частота кварцевого резонатора равна 8 МГц, поэтому микросхема К155ИЕ5 (DD3) первой ступени делителя включена так, чтобы частота генератора делилась на 8. В результате частота импульсов на ее выходе (вывод 11) будет 1 МГц. Микросхема каждой последующей ступени делит частоту на 10. Таким образом, частота импульсов на выходе микросхемы DD4 равна 100 кГц, на выходе микросхемы DD5-10 кГц, на выходе DD6-1 кГц, на выходе DD7-100 Гц, на выходе DD8- 10 Гц и на выходе всего делителя (вывод 5 микросхемы DD9)-1 Гц.

Участок измеряемых частот устанавливают переключателем SA1 "Диапазон". В крайнем правом (по схеме) положении этого переключателя трехразрядный блок цифровой индикации фиксирует частоту до 1 кГц (999 Гц), во втором от него положении-до 10 кГц (9999 ГцХ в третьем-до 100 кГц (99999 Гц) и далее до 1 МГц (999 кГц), до 10 МГц (9,999 МГц). Для более точного определения частоты сигнала приходится выбирать переключателем соответствующий поддиапазон измерения, постепенно переходят от более высокочастотного участка к низкочастотному. Так, например, чтобы измерить частоту звукового генератора, надо установить переключатель сначала в положение "х!0 кГц", а затем переводить его в сторону меньших образцовых частот.

Рис. 49. Графики, иллюстрирующие работу управляющего устройства цифрового частого, мера

Управляющее устройство, работу которого иллюстрируют графики, приведенные на рис. 49, состоит из.В-тригге-ров DD10.1 и DD10.2, микросхемы DD10, инверторов DD11.3, DD11.4 и транзистора VT1, образующих усложненный ждущий мультивибратор. На вход С D-триггера DD10.1 поступают импульсы с блока образцовых частот (рис. 49, а). По фронту импульса образцовой частоты, установленной переключателем SA1, этот триггер, работающий в режиме счета на 2, переключается в единичное состояние (рис. 49, 6) и напряжением высокого уровня на прямом выходе (вывод 5) открывает электронный ключ DD11.1. С этого момента импульсы напряжения измеряемой частоты проходят через электронный ключ, инвертор DD11.2 и поступают непосредственно на вход С1 (вывод 14) счетчика DD12. По фронту следующего импульса триггер DD10.1 принимает исходное состояние и переключает в единичное состояние триггер DD10.2 (рис. 49, в). В свою очередь триггер DD 10.2 низким уровнем напряжения на инверсном выходе (вывод 8) блокирует вход управляющего устройства от воздействия импульсов образцовой частоты, а высоким уровнем напряжения на прямом выходе (вывод 9) запускает ждущий мультивибратор. Электронный ключ закрывается напряжением низкого уровня на прямом выходе триггера DD10.1. Начинается индикация числа импульсов в пачке, поступивших на вход двоично-десятичного счетчика.

С появлением напряжения высокого уровня на прямом выходе триггера DD10.2 через резистор R5 начинает заряжаться конденсатор С3. По мере его зарядки увеличивается положительное напряжение на базе транзистора VT1 (рис. 49, г). Как только оно достигнет примерно 0,6 В, транзистор открывается, напряжение на коллекторе уменьшается почти до 0 (рис. 49, д). Появляющееся при этом на выходе элемента DD11.3 напряжение высокого уровня воздействует на входы RO микросхем DD12, DD14 и DD16, в результате чего двоично-десятичный счетчик импульсов сбрасывается в нулевое состояние, отчего результат измерения прекращается. Одновременно напряжение* низкого уровня, появившееся коротким импульсом на выводе 11 инвертора DD11.4 (рис. 49, е), переключает триггер DD10.2 и ждущий мультивибратор в исходное состояние и конденсатор СЗ разряжается через диод VD2 и элемент DD10.2. С появлением на входе триггера DD10.1 очередного импульса образцовой частоты начинается следующий цикл работы прибора в режиме измерения (рис. 49, ж).

Счетчик DD12, дешифратор DD13 и газоразрядный цифровой индикатор HG1 образуют младшую счетную ступень частотомера. Последующие счетные ступени называют старшими. В законченной конструкции частотомера индикатор HG1-крайний справа, влево от него следуют индикаторы HG2 и HG3. Первый из них высвечивает единицы, второй-десятки, третий-сотни частот данного поддиапазона измерения, выбранного переключателем SA1.

Рис. 50. Схема блока питания

Чтобы частотомер перевести в режим непрерывного счета импульсов, переключатель SA2 устанавливают в положение "Счет". В этом случае триггер DD10.1 по входу S переключается в единичное состояние-на его прямом выходе действует напряжение высокого уровня. При этом электронный ключ DD11.1 оказывается открытым и через него на вход двоично-десятичного счетчика непрерывно поступают импульсы входного сигнала. Показания счетчика в этом случае прекращаются при нажатии на кнопку SB1 "Сброс".

Блок питания частотомера (рис. 50) образуют сетевой трансформатор Т1, двухполупериодный выпрямитель VD3, конденсатор С9, сглаживающий пульсации выпрямленного напряжения, и стабилизатор напряжения на стабилитроне VD5 ч транзисторе VT2. Конденсатор СЮ на выходе стабилизатора дополнительно сглаживает пульсации выпрямленного напряжения. Конденсатор СП (как и конденсаторы С4-С8 прибора) блокирует микросхемы частотомера по цепи питания, резистор R16 поддерживает режим стабилизатора при отключенной от него нагрузке.

Напряжение обмотки III трансформатора (около 200...220 В) подается через диод DV4 в цепи питания анодных, цепей газоразрядных цифровых индикаторов частотомера.

Рис. 51. Корпус прибора

Рис. 52. Размещение блоков и деталей цифрового частотомера в корпусе

Конструкция. С внешним видом частотомера вы уже знакомы. Его корпус (рис. 51) состоит из двух П-образных частей, согнутых из мягкого листового дюралюминия толщиной 2 мм. Нижняя часть выполняет функцию сборочного шасси. В ее передней стенке, являющейся лицевой панелью прибора, выпилено прямоугольное отверстие, прикрываемое спереди пластинкой красного органического стекла, через которое видны газоразрядные индикаторы. Справа от него- отверстия для крепления входного высокочастотного разъема XS1, переключателя SA1 на пять положений, тумблера SA2 "Измерение-счет" и кнопки SB1 "Сброс". Три отверстия на задней стенке служат для выключателя питания SA3, арматуры плавкого предохранителя FU1 и ввода сетевого шнура. Верхнюю часть - крышку - привертывают винтами МЗ к дюралюминиевым уголкам, приклепанным к шасси вдоль боковых сторон. Снизу к шасси прикреплены резиновые ножки. Монтаж. Детали частотомера смонтированы на четырех печатных платах из фольгированного стеклотекстолита -толщиной 2 мм. представляющих собой функционально законченные блоки прибора. Размещение плат и других деталей частотомера в корпусе показано на рис. 52. Платы винтами с гайками укреплены на пластине листового пластика, а она-на дие шасси. Соединения между платами и другими деталями прибора выполнены гибкими проводниками в надежной изоляции.

Первым монтируйте и испытывайте блок питания. Его внешний вид и печатная плата со схемой размещения деталей показаны на рис. 53. Сетевой трансформатор Т1 самодельный, выполнен на магнитопроводе ШЛ20х32. Обмотка I, рассчитанная на напряжение сети 220 В, содержит 1650 витков провода ПЭВ-1 0,1, анодная обмотка III-1500 витков такого же провода, обмотка II-55 витков провода ПЭВ-1 0,47. Вообще же для блока питания можно использовать подходящий готовый трансформатор мощностью более 7...8 Вт, обеспечивающий на обмотке II переменное напряжение 8... 10 В при токе нагрузки не менее 0,5 А, на обмотке III - около 200 В при токе не менее 10 мА.

Регулирующий транзистор VT2 стабилизатора напряжения укреплен на Г-образной дюралюминиевой пластинке размером 50x50 и толщиной 2 мм, выполняющей функцию теплоотвода. Выводы базы и эмиттера транзистора пропущены через отверстия в плате и припаяны непосредственно к соответствующим печатным проводникам. Электрический контакт коллектора транзистора с выпрямительным блоком VD3 осуществлен через его теплоотвод, крепежные винты с гайками и фольгу платы.

Рис. 53 (а). Блок питания

Рис. 53 (б). Блок питания

Сверив монтаж со схемой блока (см рис. 50), подключите к выходу стабилизатора напряжения эквивалент нагрузки-резистор сопротивлением 10... 12 Ом на мощность рассеяния 5 Вт. Подключите блок к сети и тут же измерьте напряжение на резисторе-оно должно быть в пределах 4,75...5,25 В. Более точно это напряжение можно установить подбором стабилитрона VD5. Оставьте блок включенным на 1,5...2 ч. За это время регулирующий транзистор может нагреться до 60...70° С, но напряжение на нагрузке должно оставаться практически неизменным. Так вы испытаете блок питания при работе в условиях, близких к реальным.

Счетчик импульсов и блок цифровой индикации смонтированы на одной общей плате размером 100x80 мм (рис.54). Шины цепи питания размещены на плате со стороны микросхем, что позволило обойтись лишь двумя проволочными перемычками в местах пересечения цепей счетчиков DD12, DD14; DD16. К этим же шинам припаяны блокировочные конденсаторы С7 и С8. Выводы газоразрядных индикаторов пропущены через отверстия в плате и припаяны к токонесущим площадкам, которые затем соединены отрезками монтажного провода с соответствующими им выходами дешифраторов DDI3, DD15 и DD17 (чтобы не усложнять эскиза платы, эти соединения на рис. 54 не показаны).

Рис. 54 (а). Плата счетчика импульсов с блоком цифровой информации

Рис. 54 (б). Плата счетчика импульсов с блоком цифровой информации

Тщательно проверив монтаж и надежность паек, соедините плату с блоком питания и, соблюдая осторожность, под-1фючите блок к сети. Индикаторы должны высвечивать нули. Если теперь общий проводник RO-входов счетчиков, который должен соединяться с выводом 8 элемента DD11.3 устройства управления, замкнуть временно на "заземленный" проводник и на вход С1 (вывод 14) счетчика DD12 подать от испытательного генератора импульсы, следующие с частотой повторения 1...3 Гц, этот узел частотомера будет работать в режиме счета импульсов: индикатор HG1 станет высвечивать единицы, HG2-десятки, a HG3- сотни импульсов. После 999 импульсов на индикаторах высветятся нули и начнется счет следующего цикла импульсов.

Рис. 55 (а). Блок образцовых частот

Рис. 55 (б). Блок образцовых частот

В случае неполадок в этом узле проверяйте и испытывайте каждый разряд блока индикации раздельно с помощью индикаторов или, что лучше, электронного осциллографа.

После проверки монтажа подайте на шины питания этого блока напряжение 5 В и, пользуясь светодиодным или транзисторным индикатором, проверьте егс работоспособность. При подключения индикатора к выходу микросхемы DD5 он должен мигать с частотой 1 Гц, к выходу микросхемы DD8-с частотой 10 Гц, а к выходу DD7-с частотой 100 Гц (на глаз незаметно). Затем сигналы с выходов этих микросхем подайте поочередно на вход С1 счетчика DD12 блока цифровой индикации. Работая в режиме счета, он будет индицировать число импульсов, поступающих на него с выходов трех ступеней делителя. Если все будет так, можно считать, что и генератор блока образцовых частот работает исправно.

Формирователь импульсного напряжения, электронный ключ и устройство управления смонтированы на одной общей плате (рис. 56). Испытание этого узла частотомера начинайте с проверки работоспособности формирователя импульсов сигнала измеряемой частоты совместно с другими узлами и элементами прибора. Для этого вход S (вывод 4) триггера DD10.1 временно соедините с "заземленным" проводником (что равнозначно установке переключателя SA2 в положение "Счет"), вывод 6 инвертора DD11.2- с выводом 14 входа С1 счетчи-. ка DD12 и подайте на разъем XS1 сигнал с выхода микросхемы DD9 блока образцовых частот. Индикаторы должны высвечивать последовательно цифры от 1 до 999. При частоте импульсов 10 Гц, снимаемых с выхода микросхемы DD8, скорость счета импульсов возрастает в 10 раз.

Затем проводник, соединяющий вход S триггера DD10.1 с "заземленной" шиной питания, удалите (что соответствует установке переключателя SA2 в положение "Измерение"), вывод 8 инвертора DD11.3 соедините с шиной сброса счетчиков DD12, DD14, DD16 (предварительно удалив перемычку, которой эту шину ранее замыкали на "заземленный" проводник), вход С (вывод 3) триггера DDIO. I соедините непосредственно с выходом блока образцовых частот (вывод 5 DD9), что равнозначно установке переключателя SA1 в положение "xl Гц", и одновременно с разъемом XS1. Теперь индикатор HG1 будет периодически, примерно через 1,5...2 с (в зависимости от длительности зарядки времязадающего конденсатора СЗ), высвечивать цифру 1 (1 Гц).

Рис. 56 (а). Плата формирователя импульсного напряжения и устройств! управления

Рис. 56 (б). Плата формирователя импульсного напряжения и устройств! управления

При соединении разъема с выходом микросхемы DD8 блока образцовых частот индикаторы HG1 и HG2 должны высвечивать число 10 (10 Гц). Если же разъем соединить с выходом микросхемы DD7, индикаторы станут высвечивать число 100 (100 Гц).

После этого подайте на вход частотомера переменное напряжение сети, пониженное трансформатором до 1...3 В,- индикаторы зафиксируют частоту 50 Гц. После испытания блоков частотомера прикрепите платы к пластине листового гетинакса (можно текстолита или другого изоляционного материала) в соответствии с рис. 52, а пластину укрепите на дне шасси. Соедините платы между собой и с другими деталями частотомера, установленными на лицевой и задней стенках шасси, многожильными монтажными проводниками в поливинилхлорид-ной изоляции.

Окончательно проверьте работу прибора в режимах "Счет" и "Измерение". Источниками сигнала по-прежнему могут служить импульсы, снимаемые с разных ступеней делителя блока образцовых частот. Какие изменения, дополнения можно внести в цифровой частотомер!?

Начнем с формирователя импульсного напряжения, от которого в значительной степени зависят чувствительность и четкость работы измерительного прибора в целом. Может случиться, что в вашем распоряжении не окажется микросхемы К155ЛД1, представляющей собой два че-тырехвходовых расширителя по ИЛИ, которые во входном блоке частотомера работают в триггерном режиме. Эту микросхему можно заменить одним из триггеров Шмитта микросхемы К155ТЛ1, если дополнить его однотранзисторным усилительным каскадом. Без предварительного усиления напряжения измеряемой частоты чувствительность частотомера будет хуже, чем с формирователем на микросхеме К155ЛД1.

Схему такого варианта входного блока частотомера вы видите на рис. 57. Переменное напряжение измеряемой частоты через резистор R1 и конденсатор С1 подается на базу транзистора VT1 усилительного каскада, а с его нагрузочного резистора R4 - на вход триггера Шмитта DD1.1. Формируемые триггером импульсы, частота следования которых соответствует -частоте входного сигнала, снимаются с его выходного вывода 6 и далее поступают на входной вывод 2 электронного ключа DD11.1 управляющего устройства частотомера.

Какова роль кремниевого диода VD1 и резистора R1 на входе прибора? Диод ограничивает отрицательное напряжение на эмиттерном переходе транзистора. Пока напряжение входного сигнала не превышает 0,6...0,7 В, диод практически закрыт и не оказывает никакого влияния на работу транзистора как усилителя. Когда же амплитуда измеряемого сигнала оказывается больше этого порогового напряжения, диод при отрицательных по-лупернодах открывается и таким образом поддерживает на базе транзистора напряжение, не превышающее 0,7...0,8 В.- А резистор R1 предотвращает протекание через диод опасного для него тока лри входном сигнале повышенного напряжения.

Конденсатор С2 блокирует усилительный каскад и микросхему формирователя по цепи питания. Налаживание формирователя сводится к подбору резистора R2. Добиваются, чтобы на коллекторе транзистора (относительно общего провода) было напряжение 2,5...3 В.

Рис. 57. Формирователь импульсного напряжения на триггере Шмитта микросхемы К155ТЛ1

Чувствительность частотомера с таким формирователем импульсного напряжения будет не менее 50 мВ, что более чем на порядок лучше, чем с формирователем на микросхеме К155ЛД1.

Схема другого варианта формирователя, обеспечивающего частотомеру примерно такую же чувствительность, показана на рис. 58. Его входная цепь и усилитель-такие же, как в формирователе предыдущего варианта. А функцию самого формирователя импульсного напряжения из усиленного сигнала выполняет триггер Шмитта на логических элементах DD1.1 я DD1.2 микросхемы К155ЛАЗ. Подобный триггер Шмитта уже использовался вами в простом частотомере со стрелочным индикатором на выходе (см. рис. 24). Инвертор DD1.3 улучшает форму импульсов, подаваемых на вход электронного ключе устройства управления.

Итак, еще два возможных варианта формирователя импульсного напряжения, отличающихся один от другого используемыми в них микросхемами, но практически одинаковых по чувствительности. На каком из них остановиться, если не окажется микросхемы К155ЛД1 и, *роме того, пожелаете улучшить чувствительность частотомера? Решить этот вопрос можно опытным путем: испытать в работе оба варианта и монтировать тот из них, с которым частотомер работает четче. Выбору может помочь электронный осциллограф, на экране которого можно наблюдать формируемые импульсы. Предпочтение следует отдать формирователю, фронты и спады выходных импульсов которого круче, имеющие одинаковые длительности самих импульсов и пауз между ними.

Может случиться, что при измерении частоты более нескольких килогерц будут наблюдаться мерцания светящихся цифр индикаторов и, кроме того, прибор иногда будет показывать в два раза большую частоту. В чем причины этих явлений и как их устранить, если, конечно, они наблюдаются в готовом частотомере или появятся позже?

В описанном частотомере время индикации результата измерения зависит от положения переключателя SA1 "Диапазон". При частоте тактовых импульсов более 1 кГц, поступающих от блока образцовых частот на вход управляющего устройства, конденсатор СЗ не всегда успевает полностью разрядиться за время между двумя соседними импульсами, из-за чего при следующем цикле работы он начинает заряжаться с более высокого напряжения на нем. В результате время индикации (см. рис. 49, в и ж) уменьшается и свечение индикаторов начинает мерцать.

Причина второго явления - некоторая нестабильность конечной длительности сигнала "сброс" (см. рис. 49,е) устройства управления в исходное состояние. По фронту этого импульса триггер DD10.2 переключается в нулевое состояние и напряжение высокого уровня на его инверсном выходе (вывод 8) разрешает работу триггера DD10.1. И если тактовый импульс образцовой частоты поступит на вход С этого триггера в промежуток времени, когда сигнал сброса еще не закончился, то триггер DD10.1 переключится в единичное состояние, начнется счет входных импульсов, на что Триггер DD10.2 своевременно не среагирует, так как после такого цикла работы сигнала сброса не будет. В итоге индикаторы будут фиксировать сумму частот измеренного сигнала и показания "внепланового" цикла работы управляющего устройства.

Оба эти недостатка нетрудно устранить введением в устройство управления еще одного D-триггера, DD10.1, выделенного на рис. 59 утолщенными линиями. В таком случае с появлением сигна-. ла "сброс" работа триггера DD10.1 еще запрещена напряжением низкого уровня, поступающим на его вход R с выхода триггера DD10.1. Разрешение на его работу дает дополнительный триггер по окончании импульса, приходящего на его вход С. Период следования этих импульсов должен быть таким, чтобы во время пауз между ними конденсатор СЗ успевал полностью разрядиться. Эта задача решается подачей на вход С триггера DD10.1 импульсов частотой следования 10 Гц, снимаемых с вывода 5 счетчика DD8 блока образцовых частот.

Анод индикатора HG4 подают, как и на аноды других индикаторов, через ограничительный резистор R15 такого же номинала.

Рис. 60. Схема дополнительной счетной ступени блока цифровой индикации

При желании и наличии деталей блок цифровой индикации можно дополнить еще одной счетной ступенью - пятой. Но, как показывает радиолюбительская практика, в этом особой необходимости нет.

Следующий вопрос, который мы предвидим: какие знаковые индикаторы, кроме ИН-8-2, подойдут для частотомера? Любые другие индикаторы тлеющего разряда, например ИН-2, ИН-14, ИН-16. Надо только при монтаже учитывать соответствующую им цоколевку. Распознать же или уточнить цоколевку используемого индикатора нетрудно опытным путем, подавая на выводы его электродов постоянное или пульсирующее напряжение 150...200 В (через ограничительный резистор сопротивлением 33...47 кОм). За исходный удобно принять вывод анода-он хорошо просматривается через стеклянный баллон индикатора. Соединив с ним плюсовой проводник источника напряжения, отрицательным проводником источника касайтесь поочередно других выводов. При этом будут светиться цифры, соответствующие цоколевке проверяемого индикатора.

И еще один вопрос, касающийся выбора- кварцевого резонатора. Генератор блока образцовых частот-"сердце" частотомера, от ритмичности которого зависит точность измерений. Поэтому его работа стабилизируется кварцевым резонатором. В принципе, частоту генератора можно стабилизировать, например, частотой переменного напряжения электроосветительной сети (как это сделано в описанном выше реле времени). Но она, к сожалению, в разное время суток может отличаться от 50 Гц на 0,5... 1 Гц. Соответственно будет "плавать" частота генератора и, следовательно, погрешность измерений. В результате цифровой частотомер утратит свои достаточно высокие качества.

Вот почему без резонатора не обойтись. А как быть, если резонатора на частоту 8 МГц, использованного в описанном частотомере, нет? Подойдет любой другой кварцевый резонатор. Конечно, лучше использовать резонатор на частоту 1 МГц, потому что в этом случае отпадает надобность в микросхеме D03 первой ступени делителя, и сигнал с выхода генератора можно подать сразу на вход микросхемы DD4. Подойдет, также кварцевый резонатор на частоту 100 кГц-тогда можно исключить и микросхему DD4. В обоих случаях делитель блока образцовых частот упростится.

Рис. 61. Схема делителя частоты генератора с кварцевым резонатором на 1,96 МГц

А если и таких кварцевых резонаторов нет? Тогда используйте любой другой с резонансной частотой от 0,1 до 10 МГц. Вот конкретный пример. Допустим, есть резонатор на частоту 1,96 МГц (1960 кГц). В таком случае делитель до целого кратного числа 10 кГц можно построить по схеме, приведенной на рис. 61. Сам генератор остается без изменений. Его частоту, равную 1960 кГц, JK-триггер 2, а счетчики DD2 и DD3 совместно с микросхемой DD4 делит на К155ЛА1 (два логических элемента 4И-НЕ) дополнительно еще на 98 (2x7x7). В результате на выходе трех ступеней делителя формируются импульсы частотой 10 кГц, которые надо подавать непосредственно на вход S микросхемы DD6 делителя конструируемого частотомера.

Как видите, при использовании практически любого кварцевого резонатора надо лишь изменить построение первых ступеней делителя частоты. В этом вам поможет \ соответствующая справочная литература.


Первой конструкцией на цифровых ИС, которую изготовляли радиолюбители в 80-90 годах, как правило, были электронные часы или частотомер.
Такой частотомер и сегодня можно применять при градировке приборов, или использовать в качестве отсчетного устройства в генераторах и любительских передатчиках, при налаживании различных радиоэлектронных устройств. Прибор может заинтересовать тех, у кого без дела лежат микросхемы серии К155, либо начинающих знакомиться с устройствами автоматики и вычислительной техники.

Описываемый прибор позволяет измерять частоту электрических колебаний, период и длительность импульсов, а также может работать как счетчик импульсов. Рабочая частота от единиц Герц до нескольких десятков МГц при входном напряжении до 50 мВ. Предельная частота работы счетчиков на интегральных микросхемах К155ИЕ2 - около 15 МГц. Однако следует иметь в виду, что фактическое быстродействие триггеров и счетчиков превышает указанное значение 1,5... 2 раза, поэтому отдельные экземпляры TTL микросхем допускают работу на более высоких частотах.

Минимальная цена младшего разряда составляет 0,1 Гц при измерении частоты и 0,1 мкс при измерении периода и длительности.
Принцип действия частотомера основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени.


Принципиальная схема показана на рис.1


Исследуемый сигнал через разъем X1 и конденсатор С1 поступает на вход формирователя прямоугольных импульсов.

Широкополосный усилитель-ограничитель собран на транзисторах V1, V2 и V3. Полевой транзистор V1 обеспечивает прибору высокое входное сопротивление. Диоды V1 и V2 предохраняют транзистор V1 от повреждения при случайном попадании на вход прибора высокого напряжения. Цепочкой C2-R2 осуществляют частотную коррекцию входа усилителя.



Транзистор V4, включенный как эмитерный повторитель, согласует выход усилителя-ограничителя с входом логического элемента D6,1 микросхемы D6, обеспечивающей дальнейшее формирование прямоугольных импульсов, которые через электронный ключ поступают на устройство управления на микросхеме D9, сюда же поступают и импульсы образцовой частоты, открывающие ключ на определенное время. На выходе этого ключа появляется пачка импульсов. Число импульсов в пачке подсчитывает двоично-десятичный счетчик, его состояние после закрывания ключа отображает блок цифровой индикации.


В режиме счета импульсов управляющее устройство блокирует источник образцовой частоты, двоично-десятичный счетчик ведет непрерывный счет поступающих на его вход импульсов, а блок цифровой индикации отображает результаты счета. Показания счетчика сбрасываются нажатием кнопки «Сброс».

Задающий тактовый генератор собран на микросхеме D1 (ЛА3) и кварцевом резонаторе Z1 на частоту 1024 кГц. Делитель частоты собран на микросхемах К155ИЕ8; К155ИЕ5 и четырех К155ИЕ1. В режиме измерения точность установки «МГц», «кГц» и «Гц» задается кнопочными переключателямиSA4 и SA5.

Блок питания частотомера (рис.3) состоит из трансформатора Т1, с обмотки II которого после выпрямителя VDS1, стабилизатора напряжения на микросхеме DА1 и фильтра на конденсаторах С4 – С11, напряжение +5V подается для питания микросхем.

Напряжение 170V с обмотки III трансформатора Тр1 через диод VD5 используется для питания газоразрядных цифровых индикаторов Н1..H6.

В формирователе импульсов полевой транзистор КП303Д (V3) можно заменить на КП303 или КП307 с любым буквенным индексом, транзистор КТ347 (V5) -на КТ326, а КТ368 (V6, V7) - на КТ306.

Дроссель L1 типа Д-0,1 или самодельный - 45 витков провода ПЭВ-2 0,17, намотанных на каркасе диаметром 8 мм. Все переключатели типа П2К.


Налаживание прибора сводится к проверке правильности монтажа и измерении питающих напряжений. Правильно собранный частотомер уверенно выполняет свои функции, «капризным» узлом является лишь входной формирователь, настройке которого надо уделить максимум старания. Заменив R3 и R4 переменными резисторами 2,2 кОм и 100 Ом, надо на резисторе R5 установить напряжение примерно 0,1...0,2V. Подав от генератора сигналов на вход формирователя синусоидальное напряжение амплитудой около 0,5V, и заменив резистор R6 переменным резистором с номиналом 2,2 кОм, надо его подстроить так, чтобы на выходе элемента D6.1 появились прямоугольные импульсы. Постепенно понижая входной уровень и повышая частоту, надо подбором элементов R6 и СЗ добиться устойчивой работы формирователя во всем рабочем диапазоне. Возможно, при этом придется подобрать сопротивление резистора R9. В процессе налаживания все переменные резисторы должны иметь выводы длиной не более 1...2 см.


Когда налаживание будет завершено, следует их выпаивать по одному и заменять постоянными резисторами подходящего номинала, каждый раз проверяя работу формирователя.


В конструкции вместо индикаторов ИН-17 можно применить газоразрядные индикаторы ИН-8-2, ИН-12 и т. п.

В формирователе импульсов транзисторы КТ368 можно заменить на КТ316 или ГТ311, вместо КТ347 можно использовать КТ363, ГТ313 или ГТ328. Диоды V1, V2 и V4 можно заменить на КД521, КД522.




Схема и плата в формате sPlan7 и Sprint Layout - schema.zip *


* Данная схема была собрана мной в далеком 1988 году в одном корпусе со звуковым генератором и использовалась как цифровая шкала.

Как самостоятельный прибор оформлен недавно, поэтому возможно, где-то в схему и рисунок печатной платы могла закрасться ошибка..



Список Литературы:

В помощь радиолюбителю №084, 1983 г.

Цифровые Устройства на Интегральных Микросхемах - © Издательство «Радио и связь», 1984.

Журнал «Радио»: 1977, № 5, № 9, № 10; 1978, № 5; 1980, № 1; 1981, № 10; 1982, № 1, № 11; № 12.

Радиолюбительские цифровые устройства. - М.: Радио и связь, 1982.

Схема простого стрелочного частотомера показана на рисунке. Основу частотомера составляет триггер Шмитта и формирователь импульсов. Триггер Шмитта, будучи потенциальным реле, преобразует сигналы синусоидальной или другой формы в прямоугольные импульсы. Эти импульсы нельзя использовать для измерения, так как их длительность зависит от амплитуды входного сигнала. Их применяют для запуска формирователя импульсов на элементах DD1.3, DD1.4, которые в совокупности с R3 и одним из конденсаторов С2-С4 образуют линию задержки с фиксированной длительностью и амплитудой. Выходные импульсы подаются на прибор, отклонение стрелки которого из-за инертности подвижной системы пропорционально среднему току, протекающему через его рамку.

Схема стрелочного частотомера 20Гц-20кГц

VD1 VD2 ограничивают выходное напряжение. длительность выходного импульса формирователя определяется постоянной времени цепочки R3,C2-C4 и должна быть примерно в 5-10 раз меньше периода наивысшей измеряемой частоты. При указанных номиналах в схеме, наивысшая измеряемая частота равна 20 кГц. Подстроечные резисторы R5-R7 используются при калибровке частотомера на полное отклонение стрелки индикатора. Калибровку частотомера можно осуществлять по образцовому генератору или частотомеру. Шкала частотомера во всем диапазоне практически вся равномерная, поэтому надо только определить начальную и конечную границы шкалы.

Источник - Партин А.И. Популярно о цифровых микросхемах (1989)

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 22.09.2014

    Принципиальная схема ус-ва показана на рис.1, ус-во предназначено для управления коллекторным электродвигателем — дрель, вентилятор и так далее. На однопереходном транзисторе VT1 собран генератор коротких положительным импульсов для управления вспомогательным тринистором VS1. Питается генератор трапецеидальным напряжением, получаемым благодаря ограничению стабилитроном VD1 положительной полуволн синусоидального напряжения(100Гц). С появлением каждой полуволны такого …

  • 02.10.2014

    Этот источник питания предназначен для питания различных уст-в от напряжения 25-30В при токе 70мА от бортовой сети автомобиля. Мультивибратор на транзисторах с мощным выходом вырабатывает импульсы с частотой около 10кГц. Далее импульсы проходя через С3 С4 далее выпрямляются, при этом происходит обрезка импульсов с помощью VD1 VD2 для стабилизации выходного …