Радиосвязь. Радиосвязь Схема подключения светодиода к 220в через конденсатор

Радиосвязь. Радиосвязь Схема подключения светодиода к 220в через конденсатор

Для подключения светодиода к сети переменного тока 220В в схеме применяют специализированные блоки питания, которые называются светодиодными драйверами. Его основными техническими параметрами считаются сила тока и мощность. Для правильного подключения через драйвер может быть использован фиксированный ток на выходе или регулируемый. Если вы проектируете Лед освещение, то с регулятором будет намного удобней. Обычно лед чипы подсоединяются к драйверу последовательно, что позволяет получить практически одинаковый ток через каждый компонент схемы. Главным минусом такой цепочки будет выход из строя всей цепи, если хотя бы один светодиод перегорит. Конструкция драйвера может быть различной, от простой конструкции на гасящем конденсаторе до продвинутой с практически нулевым коэффициентом пульсации.


Принцип работы большинства рассмотренных схем подключения светодиодов к сети 220в приблизительно одинаков. Они ограничивают ток и отсекают обратную полу волну переменного напряжения. Так как большинство светодиодов боятся большого обратного напряжения, в схемах используется блокирующий диод. В качестве последнего применен IN4004 - он рассчитан на напряжение свыше 300 вольт. Если требуется подключить много светоизлучающих компонентов к 220в, то следует соединить их последовательно.


Рассмотренные ниже радиолюбительские конструкции можно применять при изготовлении самодельных цветомузыкальных устройств, различных индикаторов уровня сигнала, плавное включение и выключение освещения и т.п.

Примером такого включения является типовая светодиодная лента на напряжение 220 вольт. На ней последовательно подключены 60 светоизлучающих полупроводниковых светодиодов, которые получают питание от выпрямителя (типового ). Недостатком такой схемы подсоединения к 220в являются сильные световые пульсации.


В данной схеме подключения светодиода к 220в превышение напряжения отсекается с помощью конденсатора, который выбираем исходя из справочных параметров тока светодиодов. Мощность резистора от 0.25 Вт или выше. Конденсатор должен быть не менее 300 вольт. Номинал стабилитрона следует взять чуть больший, чем напряжение питания светодиода, например на 5 вольт отлично подойдет отечественный стабилитрон КС156А.

Схема работает следующим образом при включении питания 220В начинается заряд конденсатора С1, при этом от одной полуволны он заряжается напрямую, а с другой через стабилитрон. С увеличением напряжения на конденсаторе стабилитрон увеличивает свое внутреннее сопротивление, ограничивая тем самым напряжения заряда конденсатора. Эту схему применяют в случае питания светодиодов с большим рабочим током - от 20 мА или более.

Типовой пример такой конструкции, это . Пластинку с LED компонентами должна быть установлена на теплоотвод и рядом размещен стабилизатор. Если драйвер некачественный, то свет будет мерцать с частотой около 100 Герц. Подобные продолжительные пульсации могут нанести непоправимый вред здоровью человека или домашних животных.

Для светодиодов подключенных в цепь 220 вольт при создании светильников, всегда нужно пытаться уменьшить уровень пульсаций из-за их отрицательного влияния на зрительную систему человека. Все зависит от частоты: чем она ниже, тем заметнее глазу пульсации. На частотах выше 300 Гц пульсации полностью невидимы и поэтому безопасны для глаз.

А вот пульсации на частотах 60-80 Гц и даже 100-150 Гц практически визуально не воспринимаются, но, они вызывают повышенную утомляемость глаз и при длительном воздействие способны также ухудшить зрение.

Ниже рассмотрим схемы, как включить светодиод в сеть 220 вольт, чтобы ослабить пульсации. Для этого проще всего подключить параллельно светоизлучающему компоненту сглаживающий конденсатор.



Таблица - Зависимость тока через светодиоды от емкости балластного конденсатора.

Как только подается питание на схему мигающего светодиода начинает заряжаться конденсатор С2 через резистор и диод D1. Постоянное напряжение поступающее с емкости периодически открывает , заставляя кратковременно загораться светодиод. Частота вспышек последнего задается ёмкостью конденсатора, а яркость вспышек - сопротивлением резистора.

Сопротивление R1 предназначено для гашения амплитуды выбросов тока возникающих: в момент выбора яркости свечения тумблером SA1, в момент подключения к сети переменного напряжения на 220В и во время заряда конденсаторов. Конденсатор С4 используется для уменьшения пульсации напряжения после выпрямления переменного напряжения, таким образом уменьшается риск повреждения светодиодов при питании от сети 220В.

Одним из важных вопросов при работе со светодиодами является его подключение к сети переменного тока и высокого напряжения. Известно, что светодиод от сети 220 В напрямую питаться не может. Как правильно собрать схему и обеспечить питание, чтобы решить проблему?

Электрические свойства

Для ответа на поставленный выше вопрос необходимо изучить электрические свойства светодиода.

Его вольт-амперная характеристика представляет собой крутую линию. Это значит, что при увеличении напряжения даже на очень малую величину ток через излучающий полупроводник резко возрастает. Повышение тока ведет за собой разогрев светодиода, в результате чего он может просто сгореть. Эту проблему решают, включая в цепь ограничительный резистор.

У светодиода маленькое значение обратного пробивного напряжения (около 20 вольт), поэтому его нельзя подключать к сети 220 вольт с переменным током. Чтобы исключить протекание тока в противоположном направлении, в цепь необходимо включить диод или навстречу первому светодиоду включить второй. Подключение должно быть параллельным.

Итак, мы знаем, что любая схема подключения светодиода к сети 220 вольт должна содержать резистор и выпрямитель, иначе питание будет невозможным.

Для чего нужна такая схема? Прежде всего, для конструкции индикатора сети. Светодиодная лампочка может быть отличным индикатором, помогающим определять, включен электроприбор в сеть или нет. Ее добавляют в схему выключателей и розеток, чтобы легко находить их в темноте.

Такой индикатор начинает светиться при напряжении всего в несколько вольт. При этом он потребляет минимальное количество электроэнергии за счет малого (несколько мили ампер) тока.

Какой резистор использовать?

Чтобы подобрать оптимальное сопротивление резистора, необходимо воспользоваться законом Ома.

R=(Uсети-Uсв.)/Iсв.ном.

Предположим, мы взяли для индикатора красный светодиод с номинальным значением тока 18мА и прямым напряжением 2,0 Вольт.

(311-2)/0,018=17167 Ом=17 кОм

Объясним, откуда взялось число 311. Это пик синусоиды, по которой меняется напряжение в нашей сети. Не вдаваясь в область математики со всеми ее вычислениями, можно просто сказать, что пиковое напряжение составляет 220*√2.

Иногда встречаются схемы, в которых отсутствует выпрямляющий диод. В этом случае сопротивление необходимо увеличить в несколько раз, чтобы сделать ток меньше и обезопасить индикаторную лампочку от перегорания.

Элементарная схема индикатора тока

Что необходимо для изготовления самого простого индикатора, у которого питание происходит от сети 220 вольт? Вот перечень:

  • обычный индикаторный светодиод любого цвета, какой вам нравится;
  • резистор от 100 до 200 кОм (чем больше сопротивление, тем менее ярко будет светиться лампочка);
  • диод с обратным напряжением 100 Вольт или больше;
  • маломощный паяльник, чтобы не перегреть светодиод.

Поскольку количество деталей минимальное, то плата в монтаже не используется. Подключение индикатора осуществляется параллельно электроприбору.

Для тех, у кого нет желания бегать в поисках диода, производители придумали готовый двухцветный индикатор в виде встроенных в один корпус двух светодиодов разного цвета. Обычно это красный и зеленый цвета. В этом случае количество деталей схемы еще больше уменьшается.

Есть и другие схемы подключения, в которых резистор заменяют конденсатором или применяют диодные мосты, транзисторы и т. д. Но какие бы конструктивные особенности не вносились, основной задачей является выпрямление тока и понижение его до безопасной величины.

В декоративном освещении и прочих местах, где светодиод используется как источник света, принято подключать его через драйвер. Драйвер уже имеет необходимые параметры для бесперебойной и максимально эффективной работы светодиода. Он актуален в тех случаях, когда в цепи наличествует несколько мощных кристаллов или целый набор светодиодных лент.

Подключение светодиода напрямую к напряжению 220 В используется в том случае, когда LED будет выглядеть как слабенький индикатор – если в подключении участвуют один или несколько элементов. Для них покупка драйвера совершенно нецелесообразна. В данном материале описана разница подключения через драйвер и к сети 220 В напрямую, а также показаны и объяснены схемы подключения различных типов.

В чем заключается разница подключения

Как подключить светодиод к сети 220 В? Проблема изначально кроется в технических характеристиках LED. Его работа основана на пропускании сквозь кристаллы определенного тока, вследствие чего они светят. Драйвер призван контролировать подачу тока на кристалл, ограничивая ее тем количеством, которое необходимо конкретно для этих моделей подключаемых светодиодов.

Пример подключения драйвера
для декоративной подсветки светодиодами

Ключевой особенностью драйвера является подача на светодиод постоянного тока, а не переменного, который протекает в обычной бытовой розетке. Переменный ток 220 В подает на кристаллы синусоподобное напряжение с частотой 50 Гц. Это означает, что его направление меняется 50 раз в секунду. При этом если включить светодиод, он будет светиться только при основной подаче тока и гаснуть при обратной. На схеме это выглядит так.


Зависимость свечения кристалла
от направления переменного тока

Глядя на график, становится понятно, что LED не будет светить постоянно, а будет мигать с такой же частотой, как и сам ток – 50 раз в минуту. Для человеческого глаза такое мерцание не различимо, и он будет видеть обычный равномерный свет. Но это не значит, что подключение светодиода к сети выполнено правильно.

Светодиод способен пропускать ток только в одном направлении, обратные колебания приводят к разрушению его структуры и последующей деградации. Для того чтобы светодиод не вышел из строя, к нему необходимо применять защитные меры.

Способы подключения к переменному току

Номинал резистораПростым и дешевым способом будет использование гасящего резистора, который включается в электрическую цепь, представляющую собой последовательное соединение светодиодов. Номинальной мощностью ограничительного резистора будет значение, которое рассчитывается по следующей формуле:

где: 0,75 – коэффициент надежности LED (теоретическое, конкретное узнавать у производителя);

Uпит – напряжение источника тока;

Uпад – напряжение, падающее на диоде и вызывающее свечение кристалла;

I – номинальный проходной ток.

При этом помните, что за напряжение источника тока следует принимать не 220 В, а амплитудный параметр 310 В. Это обязательно нужно учитывать для правильности выходных параметров при выполнении расчета.

После включения резистора в цепь появляется достаточно сильное сопротивление, которое сопровождается ощутимым выделением тепла – ведь падающее напряжение должно куда-то преобразовываться. Поэтому важным параметром при подборе резистора является его мощность, которая рассчитывается по формуле:

где: U – разность сетевого и падающего напряжений.

Подключение резистора, выполненное своими руками, сгладит резкую амплитуду переменного тока и позволит подключать светодиоды к сети 220 вольт. Но даже после его подключения все равно остается обратное напряжение такой же силы, поэтому для обеспечения безопасности кристалла выполняется еще несколько операций.

Подключение диода с высоким порогом обратного пробоя. Это самый простой и эффективный способ защитить LED от тока обратного направления. Смысл в том, что этот диод имеет колоссальное сопротивление на обратное направление, пропуская ток в одну сторону и не давая ему пройти в другую. На схеме это выглядит так:

Здесь не нужно выполнять расчет – обратное напряжение такого диода должно превышать указанные выше 310 В. При изменении направления тока все напряжение будет приложено только к нему. Практика показывает, что чем больше будет его сопротивление, тем надежнее он защитит LED. Оптимальный параметр приближается к 1 000 В.

Встречно-параллельное включение светодиода и обычного диода. В отличие от обратного диода, резистор гасит напряжение в обоих направлениях. Смысл данного способа заключается в том, чтобы обратную амплитуду направить сразу на установленный ранее резистор, который и заглушит его. Учтите, что для такой схемы ранее рассчитанные параметры резистора нужно как минимум удвоить и добавить маленький хвостик в 5–10% для амортизации перепадов напряжения.


Встречно-параллельное подключение двух одинаковых светодиодов к напряжению 220 В. Как подключить светодиоды к сети 220 В? Если подразумевается подключение их в количестве двух штук (иди любого другого четного количества), то можно сразу расположить светодиоды так, чтобы заменить и диод обратного напряжения, и обычный. Аналогично предыдущей схеме вместо маленького диода на обратное направление ставится второй светодиод. Таким образом, первый импульс придется на первый светодиод, а возвратная амплитуда вернется на гасящий резистор через второй. Для реализации такой схемы не забудьте подключить светодиод к сети, соблюдая обратное направление (это касается второго элемента). Разделение будет такое – половина в одну сторону, половина в другую.


Два последних способа очень экономичны в плане покупки и установки радиодеталей, однако имеют общий существенный минус – при двойном сопротивлении на резисторе образуется и двойное выделение тепла. Поэтому необходимо правильно рассчитать его мощность. Представим наиболее простые способы выполнить расчет. Предположим, что в наших схемах использовались резисторы с сопротивлением в 30 кОм, при переменном напряжении 220 В они выдают ток около 10 мА. Рассчитываем, сколько тепла образуется на элементе:

10×10×30 = 3 000 мВт или 3 Вт.

Из этого следует, что для нормальной работы резистора в цепи с двумя светодиодами его мощность должна приближаться к 4 Вт – этого запаса вполне достаточно для безопасной работы.

Возникает следующая проблема – увеличение количества запитанных светодиодов от сети в цепи даже до 3 штук ведет к колоссальным требованиям к резистору – его мощность уже должна приближаться к 40 Вт, что экономически и логически совсем не выгодно. Этим нюансом пренебрегать не надо – если мощности окажется недостаточно для выделения тепла такой силы, резистор очень быстро перегреется и сгорит, вызвав в сети опасное короткое замыкание и доставив много проблем.

Включение конденсатора в электрическую цепь . Такой вид нагрузки имеет большое преимущество перед резистором – его сопротивление реактивное, то есть на нем мощность не рассеивается. Ниже представлена наиболее частая схема подключения светодиодов от сети 220 В с конденсатором. Следует помнить, что при всех своих преимуществах конденсатор имеет одну существенную опасность для пользователя – после отключения подачи тока в сеть 220 В он продолжает хранить внутри остаточные заряды. Для их нейтрализации в цепь подключается резистор R1. Резистор R2 устанавливается для защиты цепи от резкого скачка напряжения через конденсатор. Также не забываем и об установке диода обратного напряжения VD1, который защищает LED от возвратной полярности.


Упомянем и о материале нагрузки. Он бывает двух видов – полярный и неполярный. Для нашей цепи в обязательном порядке устанавливаются только вольтовые неполярные варианты. Электролитные и танталовые устанавливать запрещено – обратное напряжение очень быстро разрушит их структуру, что приведет к выгоранию цепи и короткому замыканию. Его мощность аналогична резистору для этих целей – не менее 400 В.

У конденсатора есть параметр, который перед подключением светодиодов к сети 220 вольт нужно рассчитывать – емкость. Эмпирическая формула приведена ниже:

где: U – все то же амплитудное напряжение переменного тока, 310 В;

I – ток, который проходит через установленный светодиод, мА;

Uд – падающее напряжение тока для образования свечения на кристалле.

Применение в быту

Чаще всего такие схемы встречаются в . Типичная схема правильного использования указана ниже:


Ввиду маленькой мощности световых устройств в них нет защищающих обратных диодов. Резистор установлен таким образом, чтобы ограничить прямой ток значением 1 мА. Такая схема подключения светодиода к сети 220 вольт не особо эффективна в плане яркости свечения, оно очень тусклое, но свою роль играет хорошо – в темной комнате выключатель видно. Здесь обратное напряжение при размыкании контактов цепи направлено на резистор, в качестве дополнительной нагрузки также выступает наличие светодиодной или любой другой лампочки, а также блока питания. Таким образом, светодиод защищен он обратного пробоя током.

Техника безопасности

Кратко о нюансах подключения, которое выполняется в большинстве домов – для обеспечения безопасности при работе с электрической цепью часто бывает мало выключить один только выключатель. Дело в том, что он, как правило, размыкает фазу, но при этом из-за отсутствия заземления на ноле остается остаточное напряжение. Если заземление неправильное, например, люди подключаются к батарее или водопроводу, есть риск попасть на напряжение между фазой и заземлением. Отключайте питание полностью на рубильнике или счетчике на входе в дом или квартиру, и сделайте уже правильное заземление, если у вас его нет.

Заключение

В создании такой цепи главный нюанс – правильный подбор параметров резистора и конденсатора. Переменный ток, который протекает в розетке, оказывает сильное разрушающее действие на элементы, неприспособленные к пропусканию через себя обратного тока. Грамотное ограничение амплитуды переменного тока с заданным амортизационным запасом и правильный расчет обезопасит цепь от выгорания и короткого замыкания, позволив ей работать долго и надежно.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину - в обратную) к нему приложится полное амплитудное напряжение сети - 315 вольт! Откуда такая цифра? 220 В - это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.

Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двух ваттных резистора, каждый сопротивлением в два раза меньше.

Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.

Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так - вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.

А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение - не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.

Как рассчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I - необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.

светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.

Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.


Ниже описание с сайта www.chipdip.ru/video/id000272895


При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радио-элементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.


Описание работы схемы подключения светодиода к напряжению 220 вольт

Схема подключения светодиода к 220 вольтам не сложная и принцип ее работы также прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. При увеличении напряжения на конденсаторе стабилитрон увеличивает свое сопротивление, ограничивая напряжения зарядки для конденсатора своим рабочим стабилизирующим напряжением, фактически тем же напряжением которым питается светодиод. Больше этого напряжения конденсатор не зарядиться, так как стабилитрон "закрылся", а во второй ветке мы имеем большое сопротивление в виде цепочки светодиод и резистор R1. В данный полупериод светодиод не светится. Стоит сказать и о том, что стабилитрон защищает светодиод от обратного тока, который может вывести светодиод из строя.
Вот, наша полуволна меняется и меняется полярность на входах нашей схемы. При этом конденсатор начинает разряжаться и менять свою полярность зарядки. Если с прямым подключением все понятно, то ток со второй ножки конденсатора утекая в цепь, проходит теперь через цепочку резистора и светодиода, именно в этот момент светодиод и начинает светиться. При этом напряжение, как мы помним, зарядки конденсатора соответствовало примерно напряжению питания светодиода, то есть наш светодиод не сгорит.




Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г.

Все дело в том, что это освещение не только достаточно мощное, но и экономически выгодное. Светодиоды - это полупроводниковые диоды в эпоксидной оболочке.

Изначально они были достаточно слабыми и дорогими. Но позднее в производство были выпущены очень яркие белые и синие диоды. К тому времени их рыночная цена снизилась. На данный момент существуют светодиоды практически любого цвета, что послужило причиной использования их в различных сферах деятельности. К ним относится освещение различных помещений, подсветка экранов и вывесок, использование на дорожных знаках и светофорах, в салоне и фарах автомобилей, в мобильных телефонах и т. д.

Описание

Светодиоды потребляют мало электроэнергии, в результате чего такое освещение постепенно вытесняет ранее существовавшие источники света. В специализированных магазинах можно приобрести различные предметы, в основе которых светодиодное освещение, начиная от обычного светильника и светодиодной ленты, заканчивая Их всех объединяет то, что для их подключения необходимо наличие тока в 12 или 24 В.

В отличие от других источников освещения, которые используют нагревательный элемент, здесь применяется полупроводниковый кристалл, который генерирует оптическое излучение под воздействием тока.

Чтобы понять схемы включения светодиодов в сеть 220В, нужно для начала сказать о том, что напрямую от такой сети он питаться не сможет. Поэтому для работы со светодиодами нужно соблюдать определенную последовательность подключения их к сети высокого напряжения.

Электрические свойства светодиода

Вольтамперная характеристика светодиода - это крутая линия. То есть, если напряжение увеличится хотя бы немного, то ток резко возрастет, это повлечет за собой перегрев светодиода с последующим его перегоранием. Чтобы этого избежать, необходимо включить в цепь ограничительный резистор.

Но важно не забывать о максимально допустимом обратном напряжении светодиодов в 20 В. И в случае его подключения в сеть с обратной полярностью он получит амплитудное напряжение в 315 вольт, то есть в 1,41 раза больше, чем действующее. Дело в том, что ток в сети на 220 вольт переменный, и он изначально пойдет в одну сторону, а затем обратно.

Для того чтобы не дать току двигаться в противоположном направлении, схема включения светодиода должна быть следующей: в цепь включается диод. Он не пропустит обратное напряжение. При этом подключение обязательно должно быть параллельным.

Еще одна схема включения светодиода в сеть 220 вольт заключается в установке двух светодиодов встречно-параллельно.

Что касается питания от сети с гасящим резистором, то это не самый лучший вариант. Потому что резистор будет выделять сильную мощность. К примеру, если использовать резистор 24 кОм, то мощность рассеивания составит примерно 3 Вт. При включении последовательно диода мощность снизится вдвое. Обратное напряжение на диоде должно равняться 400 В. Когда включаются два встречных светодиода, можно поставить два двухваттных резистора. Их сопротивление должно быть в два раза меньше. Это возможно, когда в одном корпусе два кристалла разных цветов. Обычно один кристалл красный, другой зелёный.

В том случае, когда используется резистор 200 кОм, наличие защитного диода не требуется, так как ток на обратном ходу маленький и не будет вызывать разрушение кристалла. Эта схема включения светодиодов в сеть имеет один минус - маленькая яркость лампочки. Она может применяться, например, для подсветки комнатного выключателя.

Из-за того, что ток в сети переменный, это позволяет избежать лишних трат электричества на нагрев воздуха с помощью ограничительного резистора. С этой задачей справляется конденсатор. Ведь он пропускает переменный ток и при этом не нагревается.

Важно помнить, что через конденсатор должны проходить оба полупериода сети, для того чтобы он смог пропускать переменный ток. А так как светодиод проводит ток только в одну сторону, то необходимо поставить обычный диод (либо еще дополнительный светодиод) встречно-параллельно светодиоду. Тогда он и будет пропускать второй полупериод.

Когда схема включения светодиода в сеть 220 вольт будет отключена, на конденсаторе останется напряжение. Иногда даже полное амплитудное в 315 В. Это грозит ударом тока. Чтобы этого избежать, нужно предусмотреть помимо конденсатора еще и разрядный резистор большого номинала, который в случае отсоединения от сети моментально разрядит конденсатор. Через этот резистор, при нормальной его работе, течет незначительный ток, не нагревающий его.

Для защиты от импульсного зарядного тока и в качестве предохранителя ставим низкоомный резистор. Конденсатор должен быть специальный, который рассчитан на цепь с переменным током не меньше 250 В, либо на 400 В.

Схема последовательного включения светодиодов предполагает установку лампочки из нескольких светодиодов, включенных последовательно. Для этого примера достаточно одного встречного диода.

Так как падение напряжения тока на резисторе будет меньше, то от источника питания нужно отнять суммарное падение напряжения на светодиодах.

Необходимо, чтобы устанавливаемый диод был рассчитан на ток, аналогичный току, проходящему через светодиоды, а обратное напряжение должно быть равно сумме напряжений на светодиодах. Лучше всего использовать чётное количество светодиодов и подключать их встречно-параллельно.

В одной цепочке может быть больше десяти светодиодов. Чтобы рассчитать конденсатор, нужно отнять от амплитудного напряжения сети 315 В сумму падения напряжения светодиодов. В результате узнаем число падения напряжения на конденсаторе.

Ошибки подключения светодиодов

  • Первая ошибка - это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
  • Вторая ошибка - это подключение к общему резистору светодиодов, установленных параллельно. Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды. Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.
  • Третья ошибка - это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот - работать на износ.
  • Четвертая ошибка - это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы. Причина этому - дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.
  • Пятая ошибка - включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов - примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
  • Шестая причина - это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.

Схема включения мощного светодиода

Для подключения мощных светодиодов нужно использовать AC/DC-преобразователи, у которых стабилизированный выход тока. Это поможет отказаться от применения резистора или интегральной схемы драйвера светодиодов. В то же время мы сможем добиться простого подключения светодиодов, комфортного использования системы и снижения стоимости.

Прежде чем включить в электросеть мощные светодиоды, убедитесь в надежности подключения их к источнику тока. Не подключайте систему к блоку питания, который находится под напряжением, иначе это приведет к выходу из строя светодиодов.

Светодиоды 5050. Характеристики. Схема включения

К маломощным светодиодам относятся также светодиоды поверхностного Чаще всего их используют для подсветки кнопок в мобильном телефоне или для декоративной светодиодной ленты.

Светодиоды 5050 (размер типокорпуса: 5 на 5 мм) - это полупроводниковые источники света, прямое напряжение которых 1,8-3,4 В, а сила прямого тока на каждый кристалл - до 25 мА. Особенность светодиодов SMD 5050 состоит в том, что их конструкция состоит из трех кристаллов, которые позволяют светодиоду излучать несколько цветов. Их называют RGB-светодиодами. Корпус их выполнен из термоустойчивого пластика. Линза рассеивания прозрачная и залита эпоксидной смолой.

Для того чтобы светодиоды 5050 работали как можно дольше, их необходимо подключать к номиналам сопротивлений последовательно. Для максимальной надежности схемы на каждую цепочку лучше подключить отдельный резистор.

Схемы включения мигающих светодиодов

Мигающий светодиод - это светодиод, в который встроен интегральный Частота вспышек у него составляет от 1,5 до 3 Гц.

Несмотря на то что мигающий светодиод достаточно компактный, в него вмещен полупроводниковый чип генератора и дополнительные элементы.

Что касается напряжения мигающего светодиода, то оно универсально и может варьироваться. Например, для высоковольтных это З-14 вольт, а для низковольтных 1,8-5 вольт.

Соответственно, к положительным качествам мигающего светодиода можно отнести, помимо маленького размера и компактности устройства световой сигнализации, еще и широкий диапазон допустимого напряжения тока. К тому же он может излучать различные цвета.

В отдельные виды мигающих светодиодов встраивают около трех разноцветных светодиодов, у которых разная периодичность вспышек.

Мигающие светодиоды еще и достаточно экономичны. Дело в том, что электронная схема включения светодиода сделана на МОП-структурах, благодаря чему мигающим диодом можно заменить отдельный функциональный узел. По причине маленьких габаритов мигающие светодиоды часто применяются в компактных устройствах, требующих наличия маленьких радиоэлементов.

На схеме мигающие светодиоды обозначаются так же, как и обычные, исключение лишь в том, что линии стрелок не просто прямые, а пунктирные. Тем самым они символизируют мигание светодиода.

Через прозрачный корпус мигающего светодиода видно, что он состоит из двух частей. Там на отрицательном выводе катодного основания находится кристалл светоизлучающего диода, а на анодном выводе расположен чип генератора.

Соединены все составляющие данного устройства с помощью трех золотистых проволочных перемычек. Чтобы отличить мигающий светодиод от обычного, достаточно просмотреть прозрачный корпус на свету. Там можно увидеть две подложки одинаковой величины.

На одной подложке находится кристаллический кубик светоизлучателя. Он состоит из редкоземельного сплава. Для того чтобы увеличить световой поток и фокусировку, а также для формирования диаграммы направленности используют параболический алюминиевый отражатель. Этот отражатель в мигающем светодиоде по размеру меньше, чем в обычном. Это по причине того, что во второй половине корпуса находится подложка с интегральной микросхемой.

Между собой эти две подложки сообщаются при помощи двух золотистых проволочных перемычек. Что касается корпуса мигающего светодиода, то он может быть выполнен либо из светорассеивающей матовой пластмассы, либо из прозрачного пластика.

Из-за того, что излучатель в мигающем светодиоде находится не на оси симметрии корпуса, то для функционирования равномерной засветки необходимо применение монолитного цветного диффузного световода.

Наличие прозрачного корпуса можно встретить лишь у мигающих светодиодов большого диаметра, которые обладают узкой диаграммой направленности.

Из высокочастотного задающего генератора состоит генератор мигающего светодиода. Его работа постоянна, а частота составляет около 100 кГц.

Наравне с высокочастотным генератором также функционирует делитель на логических элементах. Он, в свою очередь, осуществляет деление высокой частоты до 1,5-3 Гц. Причиной совместного применения высокочастотного генератора с делителем частоты является то, что для работы низкочастотного генератора необходимо наличие конденсатора с наибольшей ёмкостью для времязадающей цепи.

Доведение высокой частоты до 1-3 Гц требует наличия делителей на логических элементах. А их достаточно легко можно применить на небольшом пространстве полупроводникового кристалла. На полупроводниковой подложке, помимо делителя и задающего высокочастотного генератора, находится защитный диод и электронный ключ. Ограничительный резистор встраивается в мигающие светодиоды, которые рассчитаны на напряжение тока от 3 до 12 вольт.

Низковольтные мигающие светодиоды

Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.

Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.

Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.

Монтаж светодиодов

Монтаж светодиодов - очень важный вопрос по той причине, что это непосредственно связано с их жизнеспособностью.

Так как светодиоды и микросхемы не любят статику и перегрев, то паять детали необходимо как можно быстрее, не больше пяти секунд. При этом нужно использовать паяльник малой мощности. Температура жала не должна превышать 260 градусов.

При пайке дополнительно можно использовать медицинский пинцет. Пинцетом светодиод зажимается ближе к корпусу, благодаря чему при пайке создается дополнительный отвод тепла от кристалла. Чтобы ножки светодиода не сломались, их необходимо гнуть не сильно. Они должны оставаться параллельно друг другу.

Для того чтобы избежать перегрузки либо замыкания, устройство нужно снабдить предохранителем.

Схема плавного включения светодиодов

Схема плавного включения и выключения светодиодов - популярная среди других, ею интересуются автовладельцы, желающие тюнинговать свои машины. Данная схема применяется для подсветки салона автомобиля. Но это не единственное ее применение. Она используется и в других сферах.

Простая схема плавного включения светодиода должна состоять из транзистора, конденсатора, двух резисторов и светодиодов. Необходимо подобрать такие токоограничивающие резисторы, которые смогут пропускать ток в 20 мА через каждую цепочку светодиодов.

Схема плавного включения и выключения светодиодов не будет полноценной без наличия конденсатора. Именно он позволяет ее собрать. Транзистор должен быть p-n-p-структуры. А ток на коллекторе не должен быть меньше 100 мА. Если схема плавного включения светодиодов собрана правильно, то на примере салонного освещения автомобиля за 1 секунду будет проходить плавное включение светодиодов, а после закрытия дверей - плавное выключение.

Поочередное включение светодиодов. Схема

Одним из световых эффектов с применением светодиодов является поочередное их включение. Он именуется бегущим огнем. Работает такая схема от автономного питания. Для ее конструкции применяется обычный переключатель, который подает напряжение питания поочередно на каждый из светодиодов.

Рассмотрим устройство, состоящее из двух микросхем и десяти транзисторов, которые вкупе составляют задающий генератор, управление и саму индексацию. С выхода задающего генератора импульс передается на блок управления, он же десятичный счетчик. Затем напряжение поступает на базу транзистора и открывает его. Анод светодиода оказывается подключен к плюсу источника питания, что приводит к свечению.

Второй импульс формирует логическую единицу на следующем выходе счетчика, а на предыдущем появится низкое напряжение и закроет транзистор, в результате чего светодиод погаснет. Далее все происходит в той же последовательности.