Определение параметров режима газовой сварки. Сущность и режимы газовой ацетиленовой сварки

Определение параметров режима газовой сварки. Сущность и режимы газовой ацетиленовой сварки

Включает в себя хорошую подготовку деталей под сварку, выбор нужного способа газовой сварки, выбор режимов газовой сварки (необходимую мощность сварочной горелки), диаметра присадочной проволоки и правильное выполнение техники газовой сварки. Необходимо учесть все эти моменты, чтобы получить хорошее качество сварки.

Диаметр сварочной проволоки выбирают, исходя из толщины свариваемого металла и от выбранного способа сварки. Подробнее о выборе присадочных материалов изложено на странице: "Присадочные материалы для газовой сварки. Выбор сварочной проволоки".

Подготовка сварных кромок для газовой сварки

Подготовка сварных кромок включает в себя их очистку от масляных плёнок, лакокрасочных покрытий, от окалины, от грязи и пыли, ржавчины, а также разделку под сварку и их прихватку короткими швами.

Очистка сварных кромок под газовую сварку

Под газовую сварку выполняют не только очистку самих сварных кромок, но и участков в непосредственной близости от них. Ширина очищаемой зоны составляет 20-30мм с каждой стороны соединения.

Для очистки хорошо подходит пламя сварочной горелки. При нагревании горелкой, окалина отходит от металла, а лакокрасочные покрытия и масло сгорают. После этого поверхность сварных кромок и близлежащих участков тщательно зачищают при помощи металлических щёток или наждачной бумаги. Зачистку производят до появления металлического блеска на свариваемых поверхностях. Часто, для очистки, свариваемые детали подвергают дробеструйной или пескоструйной обработке.

В случае, когда невозможно удалить загрязнения при помощи щёток (например, удаление оксидных плёнок затруднено), сварные кромки и участки возле них очищают при помощи специальных паст на кислотной основе или протравливают в кислоте. После протравки необходимо промыть и высушить кромки.

Разделка кромок под газовую сварку

Сварные кромки разделывают, в зависимости от вида сварного соединения. Вид сварного соединения определяется взаимным расположением соединяемых деталей. Для газовой сварки наиболее характерны стыковые сварные соединения.

Металлы малой толщины (до 2мм) сваривают в стык с отбортовкой кромок и без применения присадочного материала (схема а) на рисунке) или без отбортовки кромок и без зазора (схема б) на рисунке), в таком случае применяют присадочный материал.

Металл, толщиной от 2мм до 5мм сваривают в стык, не разделывая кромки, но оставляя зазор между ними (схема в) на рисунке). При толщине сварного металла более 5мм, применяют V-образную, или X-образную разделку (схема г) на рисунке). Суммарный угол раскрытия кромок должен составлять 70-90° для обеспечения хорошего провара корня сварного шва.

Разделку кромок в свариваемых деталях можно выполнять вручную, пневматическим зубилом, на фрезерных станках, или же на специальных кромкострогальных станках. Но экономически целесообразным способом является кислородная резка (ручная или механизированная). При этом окалину и шлак после резки необходимо зачистить до металлического блеска.

Прихватка кромок свариваемых деталей перед газовой сваркой

Технология газовой сварки предусматривает прихватку деталей перед сваркой для того, чтобы в процессе сварки металла не допустить изменении положения деталей или появления зазоров между ними.

Длина прихваток и расстояние между ними определяются толщиной металла, формой и протяжённостью сварного шва. При сваривании деталей небольшой толщины и при небольшой длине сварного шва, прихватки выполняют длиной 5-7мм на расстоянии 70-100мм друг от друга.

В случае сваривания металла большой толщины и при больших длинах сварных швов, длина прихваток составляет 20-30мм, а рекомендуемое расстояние между прихватками составляет 300-500мм.

Выбор режимов газовой сварки

При выборе режимов газовой сварки руководствуются маркой свариваемого металла или сплава и его толщиной. А также типом и назначением свариваемого изделия. К основным характеристикам режима газовой сварки относятся: мощность сварочной горелки, вид газового пламени, марка и диаметр присадочного прутка или проволоки, способ газовой сварки и техника сварки.

Выбор мощности сварочной горелки

Тепловая мощность сварочной горелки определяется расходом ацетилена, проходящего через неё. Требуемый расход ацетилена можно определить по формуле:

Q=AS, где Q - расход ацетилена, л/ч; S - толщина свариваемого металла, мм; А - коэффициент, который вычисляют опытным путём. При сварке углеродистых сталей коэффициент А=100-130л/(ч*мм); при сварке меди А=150 л/(ч*мм), при сварке алюминия А=75 л/(ч*мм).

Рекомендуемая мощность пламени при правом способе газовой сварки определяется расходом ацетилена 120-150л/ч, а при левом способе сварки расход ацетилена определяют из расчёта 100-130л/ч на миллиметр толщины свариваемого металла.

Необходимо иметь ввиду, что увеличение расхода ацетилена приводит к повышению мощности сварочной горелки. Но при излишней её мощности возникает риск прожога металла. Мощность должна быть оптимальной и это нужно учитывать.

Мощность газового пламени регулируется сменными наконечниками, которые идут в комплекте со сварочными горелками.

Техника газовой сварки. Как варить газовой сваркой?

От правильной техники газовой сварки зависит и , и её производительность. Техника сварки включает в себя и положение сварочной горелки и направление её движения. Далее разберём оба этих момента чтобы понять, как правильно варить газовой сваркой.

Положение сварочной горелки при газовой сварке

Положение определяется её углом наклона по отношению к поверхности свариваемых деталей. На угол наклона мундштука горелки влияет толщина свариваемых деталей и теплопроводность свариваемого металла. При большой толщине металла и при большой его теплопроводности угол наклона горелки рекомендуется увеличивать.

Большой угол наклона горелки позволяет сконцентрировать нагрев металла в одном месте вследствие подачи большого количества теплоты на небольшой участок. Изменение угла наклона горелки позволяет изменять скорость нагрева металла.

На рисунке справа показаны рекомендуемые углы наклона мундштука горелки, в зависимости от свариваемой толщины металла. Рекомендуемые в графике углы даны для . При , особенно при сварке меди и при сварке алюминия рекомендуемый угол следует немного увеличить (примерно, на 15°), т.к. эти металлы обладают высокой теплопроводностью.

В самом начале процесса сварки горелку устанавливают под максимальным углом для того, чтобы обеспечить хороший прогрев металла затем, угол уменьшают до рекомендуемого значения. В конце процесса сварки угол наклона рекомендуется постепенно уменьшать, чтобы более качественно выполнить наплавление кратера и исключить возможные пережоги металла.

Движение газовой горелки при сварке

При , мундштук сварочной горелки в двух направлениях: поперечном (это направление перпендикулярно оси шва) и в продольном (вдоль оси шва). Основным движением сварки является продольное движение. Поперечное движения является вспомогательным, но оно необходимо для того, чтобы равномерно прогреть свариваемые кромки и обеспечить нужную ширину сварного шва.

Способы поперечного перемещения показаны на рисунке слева:

а) движение с отрывом горелки;
б) спиралеобразное перемещение;
в) движение полумесяцем;
г) волнистый способ перемещения.

Наплавление металла с помощью потока газового пламени не получило широкого распространения из-за появления больших . Наплавка газовым пламенем получила применение при наплавке литыми твёрдыми сплавами.

Газовая сварка является одним из видов и способов соединения металлов и их сплавов под действием высокой температуры. Сегодня поговорим об основах, ее технологии способах и приемах, достоинствах и недостатках. Данная статья будет полезна начинающим газосварщикам желающим освоить эту нелегкую профессию, а также опытным мастерам, желающим подкрепить свои знания в этой области.

Это такой способ сваривания деталей, во время которого оплавление кромок деталей, присадочной проволоки осуществляют при помощи газовой горелки. Пламя образуется от горения смеси кислорода и ацетилена, кстати, его можно заменить на другие газы. Для этого применяют бутан, ацетилен, бензин, водород и другие вещества. В зависимости от применяемых технических газов принято выделять следующие разновидности газовой сварки:

  • ацетилено-кислородная;
  • керосино-кислородная;
  • бензино-кислородная;
  • пропанобутано-кислородная.

Сущность газосварки заключена в следующем — тепло, выделяемое при горении газовой смеси, плавит края заготовки и присадки, таким образом, формируется сварочная ванна.

Пламя, применяемое для сварки можно разделить на следующие составные части:

  • нормальную;
  • окислительную;
  • восстановительную.

Характеристики пламени газовой горелки

Химический состав присадки для формирования будущего сварочного шва подбирают исходя из того, какой материал сваривают, а его размер зависит от толщины свариваемого металла.

Кислород, находящийся в стальном баллоне, проходит через редуктор, снижающий давление газа и по рукавам, поступает к месту работы. Такой же путь повторяет и горючий газ (ацетилен или его аналоги).

Оборудование и материалы, используемые при газовой сварке

В горелке перемешиваются в нужной пропорции и в момент выхода смеси из нее выполняют розжиг. Пламя в данном случае выполняет сразу три функции:

  1. Расплавляет металл,
  2. Плавит материал, выполняющий роль присадки;
  3. Защищает место, в котором происходит соединение заготовок, от воздействия атмосферного кислорода.

Расход кислорода и газа регулируют с помощью вентилей, установленных на баллонах с газом.

Температура горения достигает своего максимума в восстановительной части пламени. Именно в ней должны располагаться присадка и кромки свариваемых деталей. Если заменить ацетилен, то температура пламени будет снижена.

Подготовка кромок

Важным этапом качественного выполнения шва является правильная , которая зависит от толщины подготавливаемого металла.

Толщина металла Форма разделки Угол, ° Зазор между торцами заготовок, мм Дополнительные мероприятия
0,5-2 не производится Торцевание или отбортовка кромок. Сварка без присадки, встык
1-5 не производится 0,5 — 2 Сварка с присадкой
4-8 допускается не производить 1 — 2 Двусторонний шов
5-10 V-образная 70-90 2-4 Притупление кромок 1,5 -3мм
свыше 10 Х-образная 35-45 2-4 Притупление 2-4 мм

Необходимо очистить от грязи, краски, окалины область 20-30 мм от свариваемых поверхностей.

Режимы газовой сварки

Главная характеристика газовой сварки, это мощность пламени. Она зависит от типа металла и ряда других его характеристик, например, теплофизических свойств. Другими словами, чем толще металл, тем больше температура плавления металла, тем выше должна быть температура пламени.

Мощность пламени определяет расход горючего газа и кислорода. К, примеру, при обработке стали или чугуна расход количества газа и толщины металла связан следующей пропорцией:

Va (100–150)*S л/ч, где Va -расход горючего газа, S- толщина металла.

Регулировка данного параметра осуществляется подбором номера наконечника горелки:

Кроме этого, важную роль играет наклон горелки и размер присадки. Таким образом к параметрам и режимам сварки относятся:

  1. Мощность пламени и ее характер;
  2. Диаметр присадочной проволоки;
  3. Скорость сварки, определяемая способами выполнения сварочных швов и положения мундштука относительно плоскости заготовки.

Левый способ

При таком методе сварки деталей, сварщик перемещает горелку справа налево, присадка должна располагаться впереди горелки. Пламя направляется от шва. Это обеспечивает сварщику хороший обзор шва и как результат он может обеспечить равномерность ширины и высоты валика. Такой метод сварки применяют при работе с деталями до 5 мм.

Правый способ

Такой способ предполагает, что сварщик передвигает горелку слева направо. Проволока должна перемещаться за горелкой. Пламя направляется на шов. При таком методе остывание шва длится дольше и качество шва повышается, но вот его внешний вид оставляет желать лучшего, так как сварщик не может толком видеть его формообразование. Такой метод применяют при толщине листа больше 5 мм.

Диаметр присадочной проволоки

Подбор диаметра присадки(dп) осуществляют в зависимости от толщины свариваемого металла (S), а также от способа сваривания: левый или правый.

Основные параметры газовой сварки распространенных типов и составов сталей можно представить в виде таблицы

Положение мундштука горелки

Скорость сварки ацетиленом или плавления металла регулируют изменением угла расположения мундштука относительно плоскости свариваемого металла. Он определяется теплопроводностью, толщиной и родом металла. Толстый металл с высокой теплопроводностью требует большего угла наклона горелки ввиду долгого прогрева и приложения наибольшей мощности пламени для формирования сварочной ванны.

Для понимания характера воздействия пламени на металл при различном положении достаточно взглянуть на рисунок, представленный ниже.

Как видим,максимальное проплавление происходит при вертикальном положении горелки. Именно поэтому в начале сварки, для лучшего и быстрого прогрева мундштук располагают под углом 90 °, постепенно снижая его в соответствии с толщиной металла.

Важно! Завершающий этап газовой сварки(формирование кратера) совершают на минимальном угле для предотвращения прожига металла.

Движения горелки

В процессе работы сварщик совершает продольные и поперечные движения горелкой. Основным типов является продольное, оно направлено вдоль линии шва, предназначено для заполнения шва металлов. Поперечное движение выполняется для равномерного прогрева кромок металла и предназначено для формирования нужной ширины шва.

В свою очередь, движения присадочной осуществляются такие же колебательные движения, но в противоположную сторону движению конца горелки. Чтобы избежать дефектов в сварочном шве, конец присадки не рекомендуется извлекать из сварочной ванны, особенно из восстановительной зоны пламени.

Вид движения зависит от пространственного положения шва, его геометрических размеров, толщины и рода металла.

Техника наложения швов в различных пространственных положениях

Нижнее положение

Сварка в нижнем положении является наиболее простой, контролировать процесс формирования шва в данном случае проще всего. Снижается вероятность непровара и появления других дефектов. По технике выполнения применяют, как правило, спиралеобразные движения конца мундштука автогена. В разогретую сварочную ванну опускают присадку, делают «петлю» и повторяют операцию. Каждый следующий виток должен перекрывать предыдущий на 1/3 диаметра.

Тонкие листы сваривают встык отбортовкой кромок, т.е. края заготовок подгибаются и свариваются без применения присадочной проволоки. Можно использовать как правый, так и левый способы соединения.

Нахлесточные швы

Выполнять работу следует, по возможности, без перерывов. Если сделали паузу — перед повторным процессом переплавьте закристаллизовавшийся в кратере металл. Сварка производится левым способом с присадочным материалом. В работе с данным типом соединения целесообразнее применять дуговые технологи, как менее затратные и более производительные. Особенно это скажется на больших объемах.

Вертикальное положение

Возможные варианты выполнения вертикальных швов как сверху вниз, так и с подъемом снизу вверх. В первом случае применяется правый способ(применяется при малой толщине металла), во втором методе возможны оба варианта. Требуется определенная сноровка по удержанию сварочной ванны, не допуская ее стекания вниз. Она обеспечивается правильным положением мундштука, а также давлением газового пламени.

При значительной толщине деталей (до 20 мм) заполнение шва металлом следует выполнят двойным валиком. Подготовка кромок в данном случае не требуется, зазор между деталями должен составлять половину от толщины свариваемых заготовок.

Потолочное положение

Требует аккуратности и максимальной сосредоточенности. Перед подачей проволоки разогревают кромки. Когда они начинают плавится, в зон сварочной ванны вводят проволоку. Конец присадки быстро плавится, образуя сварной шов. Удержание металла в сварочной ванне происходит давлением пламени. Варят правым способом в несколько приемов, каждый слой делают небольшим по толщине. Чтобы металл не стекал по прутку, его следует держать ближе к горизонтальной плоскости потолочного шва.

Достоинства и недостатки

Сварка ацетиленом применяется в производстве различного оборудования вот уже порядка ста лет. И надо отметить, что эта технология актуальна, до сих пор несмотря на то, существует множество оборудования для выполнения электрической сварки, в том числе и с применением защитных газов.

Технология газовой сварки обладает рядом преимуществ:

  • для выполнения сварки нет необходимости применять сварочные аппараты;
  • доступность газовой смеси, ее можно приобрести в специализированных организациях;
  • при выполнении сварки газом нет необходимости в источнике энергии и наличия защитной среды, пламя с успехом выполняет эту функцию;
  • возможность регулировки расхода газа и соответственно температуры пламени.
  • отсутствие сильного разбрызгивания металла;
  • отсутствие УФ-излучения — работу выполняют в специальных очках газосварщика.

Между тем, газовая сварка обладает и рядом серьезных недостатков:

  • низкая скорость нагрева свариваемых металлов;
  • тепло от газовой горелки, в отличие от электродуговой имеет широкое рассеивание по поверхности свариваемых деталей и обладает низкой концентрацией в одной точке.

Экономическая составляющая газовой сварки

Нередки случаи, когда инженер технолог делает выбор в пользу газовой сварки, искренне полагая, что, таким образом, он достигнет экономии денежных средств. Но не все так просто. Да, электродуговая сварка потребляет большое количество энергии, но выполнив простые арифметические расчеты можно убедиться, что расходы на электросварку, при том же объеме работ ниже, чем на газовую. Поэтому перед тем как варить газосваркой, имеет подсчитать во сколько обойдется один метр шва.

Слабая концентрация тепла в процессе газовой сварки оказывает отрицательное влияние на ее результативность. Так, при работе с листовой сталью толщиной в 1 мм, средняя скорость сварки составляет 10 метров в час, в то время как при толщине листа 10 мм, скорость упадет до 2 метров в час. Именно поэтому газовую сварку применяют при работе со сталью толщиной до 5 мм. В остальных случаях применяют электросварку.

Ацетилено-кислородная сварка практически не механизируется. Автоматическая сварка используется при работе с трубами, обладающими тонкой стенкой. Для этого применяют горелки, на которых установлено несколько мундштуков.

Сферы использования сварки

Сварка этого типа отличается от электродуговой плавным разогревом металла. Пожалуй, это и определило сферы ее использования. Сварка газом показывает максимальный эффект при работе со сталью толщиной до пяти миллиметров. Эта технология сварки с успехом используется при обработке цветных металлов. Сварку газом используют для работы с материалами, требующими предварительного прогрева. При выборе газовой сварки, проектировщик должен руководствоваться требованиями ГОСТ.

Сварку газом применяют при проведении ремонтных работ, пайке. С ее помощью проводят восстановление изношенных деталей, например, коленчатых валов. Для этого, на изношенную поверхность наплавляют слой металла. Впоследствии место наплава будет отшлифовано и доведено до необходимого размера.

Техника выполнения газовой сварки

Качество сварного соединения в значительной степени зависит от пра­вильного выбора режима и техники выполнения сварки.

При ручной сварке пламя горел­ки направляют на свариваемые кром­ки так, чтобы они находились в восстановительной зоне на расстоянии 2…6 мм от конца ядра. Конец при­садочной проволоки также держат в восстановительной зоне или в сварочной ванне.

Положение горелки - угол накло­на ее мундштука к поверхности сва­риваемого металла зависит от толщины соединяемых кромок изделия и теплопроводности металла. Чем тол­ще металл и чем больше его теплопроводность, тем угол наклона мундштука горелки должен быть больше. Это способствует более концентрированному нагреву металла вследствие подведения большего количества теп­лоты. Углы наклона мундштука горел­ки в зависимости от толщины метал­ла при сварке низкоуглеродистой стали показаны на рис. 1.

Рис. 1

В начале сварки для быстрого и лучшего прог­рева металла устанавливают наибольший угол наклона, затем в процессе сварки этот угол уменьшают до нормы, а в конце сварки постепенно уменьша­ют, чтобы лучше заполнить кратер и предупредить пережог металла.

Различают два основных способа газовой сварки: правый и левый . При правом способе (рис. 2, а) процесс сварки ведется слева направо. Горелка 4 перемешается впереди присадочного прутка 2 , а пламя 3 направлено на формирующийся шов 1 . Этим обеспечивается хорошая за­щита сварочной ванны от воздей­ствия атмосферного возруха и замедленное охлаждение сварного шва. Та­кой cпособ позволяет получать швы высокого качества. При левом способе (рис. 2, б) процесс сварки произ­водится справа налево. Горелка перемещается за присадочным прутком, а пламя направляется на несваренные кромки и подогревает их, подготавливая к сварке.

Рис. 2

Правый способ применяют при сварке металла толщиной более 5 мм . Пламя горелки при этом способе ограничено с двух сторон кромками изделия, а позади наплавленным валиком, что значительно уменьшает рассеивание теплоты и повышает степень её использования. Однако при ле­вом способе внешний вид шва лучше, так как сварщик отчетливо видит шов и может получить равномерную высоту и ширину его. Это особенно важно при сварке тонких листов. Поэтому тонкий металл сваривают левым способом. Кроме того, при ле­вом способе пламя свободно расте­кается по поверхности металла, что снижает опасность его пережога.

Рис. 3

Выбор способа сварки зависит так­же oт пространственного положения шва. При сварке швов в нижнем по­ложении выбор способа сварки, как указано выше, зависит от толщины металла. Сварку вертикальных швов снизу вверх следует производить левым способом (рис. 3, а). Сварку горизонтальных швов выполняют ле­вым способом, направляя пламя горелки на заваренный шов (рис. 3, б). Для предупреждения вытекания рас­плавленного металла сварочную ван­ну формируют с небольшим переко­сом. Потолочные швы легче свари­вать правым способом, так как в этом случае газовый поток пламени направлен непосредственно на шов и тем самым препятствует вытеканию металла из сварочной ванны (рис. 3,в).

Рис. 4

В процессе сварки мундштук горелки и присадочный пруток совершают одновременно два движения: одно - вдоль оси свариваемого шва и второе - колебательные движения поперек оси шва (рис. 4). При этом конец присадочного прутка движется в направлении, обратном движению мундштука.

Технология газовой сварки

Для получения сварного шва с вы­сокими механическими свойствами необходимо хорошо подготовить свари­ваемые кромки, правильно подобрать мощность горелки, отрегули­ровать сварочное пламя, выбрать при­садочный материал, установить положение горелки и направление пере­мещения ее по свариваемому шву.

Подготовка кромок заключается в очистке их от масла, окалины и дру­гих загрязнений, разделке под свар­ку и прихвате короткими швами.

Свариваемые кромки зачищают на ширину 20.. 30 мм с каждой стороны шва. Для этой цели можно использовать пламя сварочной, горелки. При нагреве окалина отстает от ме­талла, а краска и масло выгорают. Затем поверхность свариваемых дета­лей зачищают стальной щеткой до металлического блеска. При необходимости (например, при сварке алю­миния) свариваемые кромки травят в кислоте и затем промывают и сушат.

Разделка кромок под сварку за­висит от типа сварного соединения, который, в свою очередь, зависит от взаимного расположения сварива­емых деталей.

Рис. 5

Стыковые соединения являются для газовой сварки наиболее рас­пространенным типом соединений. Металлы толщиной до 2 мм свари­вают встык с отбортовкой кромок (рис. 5, а) без присадочного мате­риала или встык без разделки кро­мок и без зазора (рис. 5, б), но с присадочным материалом. Металл толщиной 2…5 мм сваривают встык без разделки кромок, но с зазором между ними (рис. 5, в). При сварке металла толщиной более 5 мм при­меняют V- или Х- образную разделку кромок (рис. 5, г) . Угол скоса вы­бирают в пределах 70…90° ; при этих углах получается хороший провар вер­шины шва.

Угловые соединения (рис 5, д ) также часто применяют при сварке металлов малой толщины. Такие соединения сваривают без присадочного металла. Шов получается за счет расплавления кромок свариваемых деталей.

Нахлесточные (рис. 5, е ) и тав­ровые (рис. 93, ж) соединения до­пустимы только при сварке металла толщиной менее 3 мм , так как при больших толщинах металла неравно­мерный местный нагрев вызывает большие внутренние напряжения и деформации и даже трещины в шве и основном металле.

Скос кромок производят ручным или пневматическим зубилом, а также на кромкострогальных или фрезерных станках. Экономичным способом под­готовки кромок является ручная или механизированная кислородная резка; образующиеся при этом шлаки и окалины удаляют зубилом и метал­лической щеткой.

Чтобы не допустить изменения по­ложения свариваемых деталей и за­зора между кромками в течение все­го процесса сварки, изделие закреп­ляют в приспособлениях или с по­мощью прихваток. Длина прихваток, их число и расстояние между ними зависят от толщины металла, длины и конфигурации свариваемого шва. При сварке тонкого металла и корот­ких швах длина прихваток состав­ляет 5…7 мм , а расстояние между ними - 70… 100 мм . При сварке тол­стого металла и значительной длине прихватки делают длиной 20…30 мм , а расстояние между ними − 300… 500 мм .

Основные параметры режима свар­ки выбирают в зависимости от сва­риваемого металла, его толщины и типа изделия. Определяют потребную мощность пламени, вид пламени, мар­ку и диаметр присадочной проволоки, технику сварки. Швы накладывают одно- и многослойные. При толщине металла до 6…8 мм применяют однослойные швы, до 10 мм швы вы­полняют в два слоя, а при толщине металла более 10 мм швы сварива­ют в 3 слоя и более. Толщина слоя при многослойной сварке зави­сит от размеров шва, толщины метал­ла и составляет 3…7 мм . Перед наложением очередного слоя поверх­ность предыдущего слоя должна быть хорошо очищена металлической щет­кой. Сварку производят короткими участками. При этом стыки валиков в слоях не должны совпадать. При многослойной сварке зона нагрева меньше, чем при однослойной. В процессе сварки при наплавке оче­редного слоя происходит отжиг ниже­лежащих слоев. Кроме того, каждый слой можно подвергнуть проковке. Все эти условия позволяют получить сварной шов высокого качества, что очень важно при сварке ответствен­ных конструкций. Однако следует учесть, что при этом производитель­ность сварки низкая при большом расходе горючего газа.

Низкоуглеродистные стали свари­вают газовой сваркой без особых затруднений. Сварка выполняется нормальным пламенем. Присадочным материалом служит сварочная прово­лока по ГОСТ 2246-70 . Ответствен­ные конструкции из низкоуглероди­стой стали сваривают, применяя низ­колегированную проволоку. Наилуч­шие результаты дают кремнемарган­цовистая и марганцовистая проволоки марок Св-08ГА , Св-10Г2 , Св-08ГС , Св-08Г2С . Они позволяют получать сварные швы с высокими механи­ческими свойствами. Удельная мощ­ность пламени − 100… 150 л/(ч·мм) .

Среднеуглеродистые стали свари­ваются удовлетворительно, однако при сварке возможно образование в сварном шве и зоне термического влияния закалочных структур и тре­щин. Сварку выполняют слегка науглероживающим пламенем, так как даже при небольшом избытке в пла­мени кислорода происходит сущест­венное выгорание углерода. Удельная мощность пламени должна быть в пределах 80… 100 л/(ч·мм) . Рекомен­дуется левый способ сварки, чтобы снизить перегрев металла. При тол­щине металла более 3 мм следует проводить предварительный общий подогрев детали до 250…300°С или местный нагрев до 650…700°С . При­садочным материалом служат марки сварочной проволоки, указанные для малоуглеродистой стали, и проволока марки Св-12ГС .

При определении мощности пламе­ни следует иметь в виду, что при сварке правым способом удельная мощность должна быть повышена на 20…25% . Увеличение мощности пла­мени повышает производительность сварки. Однако при этом возрастает опасность пережога металла.

Диаметр присадочной проволоки d (мм) при сварке металла толщиной до 15 мм левым способом определяют по формуле d = S /2 +1 , где S - толщина свариваемой стали, мм . При правом способе диаметр проволоки берут равным половине толщины сва­риваемого металла. При сварке ме­талла толщиной более 15 мм при­меняют проволоку диаметром 6…8 мм .

Сварка в нижнем положении затруднений не вызывает и не требует каких-либо специальных приемов. Сварку вертикальных швов снизу вверх удобнее выполнять левым способом (рис. 87, а). Горизонтальные швы чаще выполняют правым способом (рис. 87, б), при котором газовый поток пламени направлен на шов и тем самым препятствует стеканию металла из сварочной ванны. В этом случае в отличие от обычного правого способа сварку ведут справа налево, а сварочной ванне придают некоторый наклон, облегчающий формирование шва. Потолочные швы также лучше сваривать правым способом (рис. 87, в), в этом случае конец присадочной проволоки и давление газового потока препятствуют стеканию жидкого металла вниз.

Рис. 87. Сварка вертикальных (а), горизонтальных на вертикальной плоскости (б) и потолочных (в) швов

Режимы газовой сварки определяются в основном следующими факторами: мощностью сварочного пламени, скоростью сварки, диаметром присадочного материала, углом наклона мундштука горелки. Все эти факторы связаны с толщиной свариваемого металла.

Мощность пламени определяется расходом горючего и обычно измеряется в литрах на час. Приближенно мощность ацетилено-кислородного пламени можно определить по формуле V а =kS,

где V a - мощность пламени (расход ацетилена), л/ч;

S - толщина свариваемого металла, мм;

k - коэффициент пропорциональности, л/ч*мм (для низкоуглеродистой стали - 100-130, для высоколегированной стали и чугуна - 75-100, для алюминия - 100-150, для меди и ее сплавов- 150-225).

При сварке правым способом значение коэффициента пропорциональности несколько возрастает.

Скорость сварки примерно может быть определена по формуле v св =А/S,

где v св -скорость сварки, м/ч;

S - толщина свариваемого металла, мм; А - коэффициент, зависящий от свойств свариваемого металла и частично от его толщины, м*мм/ч (для стали средних толщин-12-15, для никеля -9-11).

Диаметр присадочного материала в виде проволоки , прутков или литых стержней приближенно подбирается по формулам:

для левого способа сварки d= S/2 + 1;

для правого способа сварки d=S/2;

При толщине металла более 15 мм в практике всегда применяют присадочный материал диаметром 6-8 мм и более.

Угол наклона мундштука горелки увеличивают с увеличением толщины свариваемого металла. Примерные значения его, рекомендуемые для левого способа сварки сталей, приведены на рис. 88. При сварке более теплопроводных материалов (медь, ее сплавы и др.) угол наклона должен быть несколько большим.

Рис. 88. Углы наклона мундштука горелки при сварке стали разных толщин

Метод газовой сварки прост, универсален, не требует дополнительного оборудования и используется в заводских условиях, а также при строительно-монтажных и ремонтных работах во всех отраслях народного хозяйства.

Газовая сварка широко применяется для соединения низко и среднеуглеродистых, а также легированных (хромированных, содержание до 0,2% углерода) сталей толщиной до 3 мм. Применение газовой сварки для соединения сталей толщиной свыше 3-4 мм возможно, но нецелесообразно, электродуговые методы более совершенные и производительные.

Перед сваркой детали подвергаются определенной подготовке, что включает следующие операции: очистку свариваемых кромок, разделку кромок под сварку (если это необходимо) и наложение прихваток для соединения свариваемых листов или деталей.

Наложение прихваток необходимо для того, чтобы положение свариваемых деталей и зазор между ними сохранились постоянными в процессе сварки.

Длина прихваток, расстояние между ними и порядок наложения зависят от толщины свариваемого метала и длины шва

Параметры прихвата

Прихватку необходимо произвести на тех же режимах, что и процесс сварки шва, так как непровар в прихватах может привести к браку всего сварного соединения.

К параметрам режима сварки относятся: мощность пламени, диаметр присадочной проволоки, расход присадочного материала, состав пламени.

Выбор режима сватки зависит от теплофизических свойств свариваемого материала, габаритных размеров и форм изделия. Большое влияние на режим сварки оказывает используемый способ сварки (левый, правый) и положение свариваемого шва в пространстве.

Диаметр сварочной проволоки присадочного металла для сварки всех сталей подбирается в зависимости от толщины свариваемого металла и в пределах толщины до 15 мм может быть определен по следующим эмпирическим формулам:

для левого способа сварки

для правого способа сварки

где d − диаметр проволоки, мм; S – толщина металла, мм.

При сварке сталей толщиной более 15 мм диаметр проволоки на практике всегда применяют равный 6−8 мм. Присадочная проволока по своему химическому составу должна быть близка к химическому составу свариваемого металла.

Для предлагаемых в данной работе заданиях сталей рекомендуется выбрать следующие марки проволоки:

для низкоуглеродистых сталей – Cв-08; Cв-08А; Cв-12ГС; Cв-08ГС; Cв-08Г2С;

для среднеуглеродистых сталей – Cв-08ГА; Cв-10ГА; Cв-08ГС;


для легированных сталей:

хромомолибденовые – Cв-08; Cв-08А; Cв-10Г2;

молибденовые – Cв-18ХМА; Cв-19ХМА;

хромистые – Cв 19ХГС; Cв 13ХМА; Cв-08; Св-08А.

Для газовой сварки необходимо, чтобы сварочное пламя обладало достаточной тепловой мощностью.

Мощность газокислородного пламени или часовой расход горючего газа μ, л/ч, определяется количеством ацетилена, проходящего за один час через горелку, а последнее зависит от толщины свариваемого металла и способа сварки.

При расчетах мощность пламени можно определить по следующим эмпирическим формулам:

где К М – коэффициент пропорциональности, представляет собой удельный расход ацетилена, л/ч, необходимый для сварки данного металла толщиной 1 мм.

Для сварки сталей, содержащих углерод до 0,25%, при правом способе К М выбирается из расчета 120−150 л/ч ацетилена, а при левом способе − 100−130 л/ч. Причем, меньшие значения принимают при сварке легированных сталей.

Для сварки стали наибольшее применение получили горелки инженерного типа малой (Г2-04) и средней (Г3-03) мощности, работающие на ацетилене. Эти горелки имеют аналогичную конструкцию и отличаются, главным образом комплектуемыми наконечниками. Например, горелка типа Г2 комплектуется пятью наконечниками (№ 0, 1, 2, 3, и 4), горелка Г3 – семью наконечниками. Диапазоны расхода газа через наконечники соседних номеров взаимно перекрываются. Это обеспечивает взаимность плавной регулировки мощности пламени горелок путем замены наконечников и манипулирования вентилями горелки. При сварке тип горелки и номер наконечника выбирают в зависимости от толщины свариваемой стали по табл. 9. Горелки Г2-04 комплектуют четырьмя наконечниками (№ 1−№ 4), а горелки ГЗ-03 – тремя наконечниками (№ 3, 4 и 6). Остальные наконечники поставляются по особому заказу.

Прогрессивным источником газопитания передвижных сварочных постов является использование растворенного ацетилена в баллонах. Однако на сегодняшний день недостаточно производственных мощностей для удовлетворения выпуска растворенного ацетилена в баллонах. Поэтому сейчас широко применяются передвижные ацетиленовые генераторы отечественного производства.

Состав пламени определяется соотношением расхода кислорода к ацетилену. Он устанавливается по внешнему виду пламени. В процессе работы сварщик должен следить за характером пламени и регулировать его состав в зависимости от свойств свариваемых материалов. При сварке углеродистых и легированных сталей с содержанием углерода до 0,25%, это соотношение равняется 1,1−1,2.

Последовательность выполнения расчета

Студент согласно своему варианту, что соответствует номеру по списку группы, выписывает исходные данные для расчета по табл. 11 и выполняет эскиз поперечного сечения сварного шва (табл. 12).

Определить диаметр присадочного материала, выбрать марку сварочной проволоки и параметры прихватки.

Определить мощность пламени газовой горелки и выбрать номер наконечника газовой горелки.

Подобрать переносной газовый генератор и занести в отчет его техническое характеристики.

Определить массу наплавленного металла и расход электродной проволоки.

Определить основное время сварки и скорость сварки.

Таблица 9

Технические характеристики газовых горелок

Тип горелки

Толщина стали, мм

Рабочее давление

газов, МПа

Расход горючего

Коэффициент наплавки,

С 2 Н 2 О 2
Малой мощности Г2-04 0 1 2 3 4 0,2−0,5 0,5−1 1−2 2−4 4−6 0,001−0,1 0,15−0,25 30−50 60−125 125−230 230−400 400−620 4−2 6−4 7−6 10−7 14−13
Средней мощности Г3-03 0 1 2 3 4 5 6 7 0,2−0,5 0,5−1 1−2 2−4 4−7 7−11 11−18 17−30 0,001−0,1 0,15−0,35 30−50 60−125 125−230 230−400 400−620 700−950 1350−1750 1800−2500 4−2 6−4 7−6 10−7 14−7 16−15 18−17 21−18

Таблица 10

Основные технические характеристики некоторых типов переносных ацетиленовых генераторов

Марка генераторов Система взаимодействия карбида каль-ция с водой Производи-тельность, м 3 /ч Рабочее давление ацетилена, МПа Гранулация карбида кальция
АСК-0,5 ВВ 0,5 0,01−0,03 1,3
ГВД-0,8 ВВ 0,8 0,007−0,03 2
АНВ-1,25 ВК-ВВ 1,25 0,0015−0,002 5
АСМ-1,25 ВВ 1,25 0,01−0,07 2,2
АСВ-1,25 ВВ 1,25 0,01−0,07 3
МГ-55 ВВ 2,0 0,0035 2−2,5
ПЗР-1,25 ВВ 1,25 0,01−0,02 4