Устройство тепловой электрической станции. Как работает тепловая электростанция? Как работают тепловые электростанции

Устройство тепловой электрической станции. Как работает тепловая электростанция? Как работают тепловые электростанции

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

Современные тепловые электрические станции имеют преимущественно блочную структуру. Рассматриваемая ТЭЦ выполнена по блочной схеме с поперечными связями по пару и питательной воде. ТЭЦ с блочной структурой составляется из отдельных энергоблоков. В состав каждого энергоблока входят основные агрегаты – турбинный и котельный и связанное с ним непосредственно вспомогательное оборудование.

Применение блочной схемы связано со следующими особенностями эксплуатации:

1. Котельный резерв на блочных ТЭЦ отсутствует, что компенсируется аварийным резервом в энергосистеме. Останов котла означает потерю мощности энергоблока.

2. Аварийные ситуации локализуются в рамках энергоблока, не затрагивая соседние блоки.

3. Упрощение тепловой схемы и коммуникаций, отсутствие соединительных магистралей, уменьшение числа элементов арматуры облегчает и делает его более надежным.

4. Управление блоком ввиду тесной взаимосвязи котла и турбины осуществляется из единого центра, каковым является блочный щит управления.

5. Каждый последующий энергоблок ТЭЦ может быть выполнен отличным от предыдущего с применением более прогрессивных решений.

6. Блочная схема приводит к блочному пуску, т. е. к одновременному пуску котла и турбины на скользящих параметрах пара.

Основным оборудованием ТЭЦ являются турбина, котел и генератор. Серийные агрегаты стандартизированы по соответствующим показателям: мощности, параметрам пара, производительности, напряжению и силе тока и т. д. При выборе предпочтение отдается стандартным агрегатам. На выбор агрегатов существенное влияние оказывает тепловая схема электростанции.

При выборе основного оборудования блочной ТЭЦ должны соблюдаться следующие требования:

1. Тип и количество основного оборудования должны соответствовать заданной мощности электростанции и предусмотренному режиму ее работы. Возможные варианты по значениям мощности блоков и параметрам пара сопоставляются по технико-экономическим показателям, таким как удельные капитальные затраты, себестоимость энергии, удельный расход условного топлива.

2. Ограничения по мощности выбираемых блоков накладывается мощностью энергосистемы.

3. К блокам, предназначенным для регулирования нагрузки системы (пиковым и полупиковым), предъявляются дополнительные ограничения по мощности и параметрам пара.

4. Выбор основного оборудования для блочных ТЭЦ заключается в выборе блоков, включающих в себя все основные агрегаты и вспомогательное оборудование.

5. Тип парового котла должен соответствовать виду топлива, выделенному для проектируемой электростанции.

6. Производительность парового котла блока ТЭЦ выбирается такой, чтобы обеспечивался номинальный расход пара на турбину вместе с расходом на собственные нужды и запасом, равным 3%.

7. Число котлов выбирается равным числу турбин – это позволяет иметь одинаковую строительную длину котельного и турбинного отделений.

8. При расширении ТЭЦ в целях увеличения отопительной мощности рассматриваются два варианта: или установка турбины типа Т, или увеличение количества водогрейных котлов.

На ТЭЦ-2 сооружено три блока, на которых установлено следующее технологическое оборудование для покрытия тепловых и электрических нагрузок:

1. Турбоагрегаты:

Блоки №1,2 – турбина типа ПТ-80-130/13;

Блок №3 – турбина типа Т-100/120-13.

Для промышленно-отопительных ТЭЦ применяются конденсационные турбины типа ПТ с двумя регулируемыми отборами пара. Т. к. на рассматриваемой ТЭЦ преобладает отопительная нагрузка, то в дополнение к турбинам ПТ установлена турбина типа Т с теплофикационными отборами. В таблице 1.1 представим технические характеристики турбин.

Таблица 1.1 – Технические характеристики турбин рассматриваемой ТЭЦ

Характеристики Данные
ПТ-80-130/13 Т-100/120-130
Номинальная мощность, МВт
Максимальная мощность, МВт -
Давление свежего пара
Температура свежего пара,
Номинальный расход свежего пара, т/час
Число регенеративных отборов
Пределы регулирования давления пара в отборах:
- производственном, МПа 1-1,6 -
- отопительном, МПа 0,03-0,25 -
- верхнем отопительном, Мпа - 0,06-0,25
-нижнем отопительном, МПа - 0,05-0,20
Удельный расход свежего пара при номинальном теплофикационном режиме, кг/ кВт ч 5,6 4,3
Число цилиндров турбины
Число конденсаторов
Расход пара в отборах: -
-производственном, т/час -
-отопительном, т/час 0,06-0,25
-верхнем и нижнем отопительных, т/час 0,05-0,20
Температура охлаждающей среды,

2. Котлоагрегаты. На рассматриваемой ТЭЦ установлены следующие котлоагрегаты:

Для всех блоков – энергетические котлы типа ТГМ-96б (три штуки) парапроизводительностью 480 т/час;

Три пиковых водогрейных котла типа ПТВМ-100 производительностью 100 Г кал/час;

Два пиковых водогрейных котла типа КВГМ-180 производительностью 1180 Г кал/час.

Резервные котлы на блочных ТЭЦ не устанавливаются. На ТЭЦ в качестве резерва устанавливаются водогрейные котлы. Количество их принимается равным не менее двух, а суммарная мощность такова, чтобы при отключении одного энергетического котла остальные вместе с водогрейными котлами обеспечивали среднюю отопительную нагрузку наиболее холодного месяца. Для принятой блочной схемы ТЭЦ котлы ТГМ-96б обеспечивают максимальный расход пара на турбину ПТ-80/13-130 с запасом 2,1%, а для турбин Т-100/1220 130-3 обеспечивают только номинальный пропуск пара турбиной без запаса. Максимальный пропуск пара турбиной 485 т/час не покрываются. В таблице 1.2 представим технические характеристики котлов.

Таблица 1.2 – Технические характеристики котлов рассматриваемой ТЭЦ

Характеристики Данные
Энергетический котел типа ТГМ-96б
Паропроизводительность, т/час
Температура питательной воды,
Температура пара,
Давление пара,
-МПа 13,8
-кг с/ см²
Температура уходящих газов,
К.п.д. гарантийный, % 92,8
Воздухоподогреватель – РВП -
Топливо – газ и мазут -
Водогрейный котел типа ПТВМ-100
Давление, кг с/см² 10,3
Топливо – газ и мазут -
Расход воды
- в основном режиме, т/час
- в пиковом режиме, т/час
К.п.д., % 90,5
Температура воды на входе в котел
- в основном режиме,
- в пиковом режиме,
Водогрейный котел типа КВГМ-180
Теплопроизводительность, Гкал/час
Давление, кг с/см² 8-25
Топливо – газ -
Расход воды, т/час
К.п.д., % 88,8
Температура воды на входе в котел,
Температура воды на выходе из котла,

Каждый из блоков ТЭЦ-2 в номинальном режиме выдает 80 МВт электроэнергии, а также тепло с сетевой водой (на отопление и горячее водоснабжение) – 100 Гкал/час. С блоков №1, 2 можно выдать пар для промышленных предприятий – 80 Гкал/час. Пиковые водогрейные котлы могут выдать суммарную тепловую мощность 660 Гкал/час. Так как ТЭЦ-2 является электростанцией комбинированного типа, она производит электричество и тепло в разных количествах в зависимости от климатических условий и от инструкций со стороны контрольных органов.

В определенных условиях ТЭЦ может производить только электроэнергию (при конденсационном режиме) или же напротив поставлять максимальное количество теплоэнергии турбин блоков и дополнительно электроэнергию. В зависимости от ситуации с топливом, можно поставить дополнительное тепло с пиковых водогрейных котлов.

ТЕПЛОВАЯ СХЕМА ТЭЦ. ТОПЛИВО

На технологической схеме ТЭЦ отображают цепочку технологических процессов от доставки топлива до выдачи электроэнергии.

Технологическая схема выполнена по блочному принципу (рис.1.1).

Рис. 1.1 – Технологическая схема ТЭЦ (Обозначения: G – генератор; Т – трансформатор; ТСН – трансформатор собственных нужд; ТХ – топливное хозяйство; ГВТ – газовоздушный тракт)

Рассмотрим работу схемы: пар из котла 1 поступает через пароперегреватель 2 в турбину, состоящую из цилиндра высокого давления 3 и из цилиндра низкого давления 4. Отработанный пар конденсируется в конденсаторе 5 водой, подаваемой из охлаждающей градирни 14 циркуляционным насосом 13, а затем конденсат подается конденсатным насосом 6 в подогреватели низкого давления (ПНД) 7 со сливным насосом из ПНД конденсатора 8. В ПНД конденсат подогревается и поступает в деаэратор 9. Подпиточная вода из природного водоема насосом технического водоснабжения 16 подается в водоподготовительную установку (химводоочистку) 15, после специальной обработки, в которой также поступает в деаэратор 9. Питательная вода, освобожденная в деаэраторе от кислорода и углекислого газа, подается в котел 1 питательным насосом 10. При этом проходит через подогреватели высокого давления (ПВД) 11 и экономайзер 12, где подогревается отбираемым из турбины паром и отходящими от котла газами.

Для промышленных нужд имеется в наличии отбор пара из турбины 22, возврат конденсата от технологических потребителей осуществляется насосом 23. Для подогрева сетевой воды (для отопления и горячего водоснабжения) используется теплофикационный отбор, пар из которого направляется в подогреватели сетевой воды 17. В пиковом режиме работы для подогрева сетевой воды используются водогрейные котлы 18 и пиковые бойлера 24, со сливными насосами 25. Для обеспечения циркуляции воды в теплофикационной сети служат сетевые насосы I-го и II-го 19 подъемов. Для покрытия потерь сетевой воды используется насос подпитки тепловых сетей 21.

Реально технологическая схема ТЭЦ намного сложнее, т. к. в приведенной схеме на рисунке1.1 однотипное оборудование изображено один раз независимо от числа установленных на электростанции вспомогательных и основных агрегатов. Количество рабочих и резервных агрегатов зависит от вида и мощности станции, места механизмов в технологическом процессе и других факторов.

В энергетических установках требуемые параметры рабочего тела получают, используя энергию топлива. Под энергетическим топливом понимают вещества, выделяющие при определенных условиях значительное количество теплоты, которое экономически целесообразно использовать как источник энергии.

Энергетические и водогрейные котлы на ТЭЦ-2 газомазутные. Основным топливом для электростанции является природный газ, а резервным – мазут марки М100 и М40.

Мазут – высокий, тяжелый остаток перегонки нефти, получающийся после отгона легких фракций (бензина, керосина, лигроина и др.), применяют в энергетике преимущественно в качестве жидкого топлива. Мазут классифицируют по вязкости и содержанию соединений серы на малосернистые (S<0,5%), сернистые (S=0,5¸2%) и высокосернистые (S>2%).

На ТЭЦ топливо перед сжиганием специально подготавливают, что обеспечивает надежную и экономичную работу топочных устройств и всего котла. Характер подготовительных операций зависит от вида топлива.

Природный газ, подаваемый по газопроводам, имеет давление, значительно превышающее необходимое при сжигании. Поэтому предварительно на газораспредилительных станциях (ГРС) или пунктах (ГРП) электростанции снижают давление газа, а также очищают его от механических примесей и влаги. Подготовка газообразного топлива наиболее проста и требует небольших площадей и материальных затрат.

Горение жидкого топлива (мазута) происходит после его испарения. Скорость испарения жидкости, а следовательно, горения, тем выше, чем больше ее удельная поверхность, т. е. поверхность, приходящаяся на единицу массы топлива. Чтобы получить большую удельную поверхность жидкого топлива, его распыляют на мелкие частицы. Для качественного распыления и надежной транспортировки по трубопроводам мазут марок М100 и М40 предварительно подогревают до 95-135 . Кроме того, мазут, как и газообразное топливо, очищают от механических примесей, а также повышают в зависимости от типа распыляющих устройств – горелок – до определенных значений его давление.

Материалы статьи содержат чертеж принципиальной схемы тепловой электростанции с паровыми котлами и турбинами,схема включает ренеративную систему, система сетевой воды и технического водоснабжения.

Условные обозначения

  • БА ГВС (баки-аккумуляторы ГВС) – для сглаживания неравномерности расхода подпиточной воды.
  • БГВС (ПГВС) (бойлер, подогреватель горячего водоснабжения) – для подогрева подпиточной (осветлённой) воды.
  • БЗК (бак запаса конденсата) – для запаса обессоленной воды и сглаживания неравномерности в потреблении обессоленной воды.
  • БНТ (бак нижних точек) – бак для организованного сбора протечек обессоленной воды в турбинном отделении КТЦ.
  • БУ (бойлерная установка) – группа ОБ.
  • Водо-водяные теплообменники – для подогрева осветлённой воды.
  • Г – генератор
  • Дренажный бак – для сбора дренажей оборудования ТЭЦ.
  • Дренажный насос – для перекачки воды из дренажных баков в схему ТЭЦ.
  • ЗПН (зимний подпиточный насос) – для подачи подпиточной воды в обратные магистрали теплосети.
  • К – котёл
  • КН (конденсатный насос) – для откачки конденсата из теплообменных аппаратов.
  • Конденсатор – для конденсации обработанного в турбине пара.
  • ЛПН (летний подпиточный насос) - для подачи подпиточной воды при работе по однотрубной схеме теплосети (летний период).
  • НБЗК (насос БЗК) – для перекачки обессоленной воды в схему ТЭЦ.
  • НБНТ (насос баков нижних точек) – для перекачки воды из БНТ в схему ТЭЦ.
  • НОВ ГВС – для перекачки воды после мехфильтров ХЦ в схему ТО КТЦ).
  • НППВ (насос перекачки питательной воды) – для возврата конденсата с I очереди в деаэраторы II оч.
  • НСВ ГВС (насос сырой воды ГВС) – для подачи циркуляционной воды в схему подготовки подпиточной во-ды.
  • ОБ (основной бойлер) – для подогрева сетевой воды на I очереди.
  • ПВД (подогреватель высокого давления) – для подогрева питательной воды паром нерегулируемых отборов турбины.
  • ПВК (пиковый водогрейный котёл) для подогрева сетевой воды
  • Перекачивающий насос – для перекачки обессоленной воды из деаэраторов 1,2 ата I очереди в деаэраторы 6 ата.
  • ПНД (подогреватель низкого давления) – для подогрева основного конденсата паром нерегулируемых отборов турбины.
  • ПОВ (подогреватель обессоленной воды) – для подогрева обессоленной воды.
  • Подпорный насос – для подачи сетевой воды через СПГ на всас СН II очереди.
  • ПСВ (подогреватель сырой воды) – для подогрева сырой воды подаваемой на обессоливающую установку ХЦ.
  • ПЭН (питательный электронасос) – предназначен для обеспечения котлов питательной водой.
  • РД (регулятор давления) – для поддержания заданного значения давления.
  • РОУ (редукционная охладительная установка) – для снижения параметров пара по давлению и температуре.
  • Сливной насос – для перекачки конденсата греющего пара из ПНД в линию основного конденсата турбины.
  • СН (сетевой насос) – для подачи сетевой воды в город.
  • СПГ (сетевой подогреватель горизонтальный) – для подогрева сетевой воды на II очереди.
  • ТГ – турбогенератор
  • Эжектор – для удаления неконденсирующихся газов из теплообменных аппаратов.

Котлоагрегаты

На ТЭЦ установлено 6 котлов, отличающиеся конструктивно, по производительности, температуре и давлению пара.

Все котлы барабанные с естественной циркуляцией, П-образной компоновки (К-1,2 двухбарабанные), работают на 2-х видах топлива: газ - мазут. Количество горелок: К-1,2 – 4 газовых горелки + 4 мазутных форсунки; К-3 – 2 газовых горелки + 2 мазутных форсунки; К-4,5,6 – 8 газовых горелок + 8 мазутных форсунок. На котлах 1 очереди имеется стеклянный регенеративный воздухоподогреватель. Для поддержания горения на котлах установлено по 2 дутьевых вентилятора (ДВ), дымовые газы удаляются дымососами (Д). Для уменьшения в отработанных газах содержания NO Х, а также режима горения при работе на мазуте, на котлах установлены дымососы рециркуляции дымовых газов (ВГД, ДРГ).

Схема подготовки подпиточной воды ГВС

В целях увеличения тепловой мощности ТЭЦ и для использования тепла конденсаторов ТГ – 1,2 работающих по тепловому графику (с закрытыми диафрагмами, включёнными бойлерами) на подогрев воды, идущей на всас НСВ ГВС № 1,2,3.4 2 оч, используется следующая схема.

Циркуляционная вода поступает в конденсаторы ТГ – 1,2 подключенных последовательно, где происходит её нагрев до 10-15°С.далее из сливных водоводов левой и правой половин конденсатора ТГ – 2 вода через две задвижки Ду 500 мм (№ 708/III, 711/III) направляется в трубопровод Ду 700 мм (смонтированный вдоль машзала –на I оч. по ряду «Д», на II оч. по ряду «А») и через задвижку Ду 600 мм (№ 1342) попадает на всас НСВ ГВС – 1,2,3,4 и далее через встроенные пучки конденсаторов ТГ – 3,4, где происходит её дальнейший нагрев (максимально до 40°С) на механические фильтры ХЦ.

(Visited 35 469 times, 9 visits today)

Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности:

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.