Изготовление плазмореза из инвертора своими руками: инструкция, схемы, видео. Плазморез из инвертора Инверторный плазменный резак как сваривать металл

Изготовление плазмореза из инвертора своими руками: инструкция, схемы, видео. Плазморез из инвертора Инверторный плазменный резак как сваривать металл

Резка металла осуществляется несколькими способами – механическим методом, дуговой сваркой или воздействием плазмы с высокой температурой. В последнем случае в качестве источника питания можно использовать инвертор. Для изготовления своими руками эффективного плазмореза потребуется ознакомиться со схемой и принципом работы устройства.

Схема плазменного резака

Обработка металлических поверхностей, их резка и контролируемое деформирование происходит с помощью струи воздуха или инертного газа. Давление и наличие воспламеняемого компонента (электрода) обеспечивает формирование области плазмы. Она оказывает влиянием высокой температурой и давлением на область заготовки, в результате чего происходит ее разрезание.

Особенности изготовления плазмореза на основе инверторного сварочного аппарата:

  • Предварительный расчет мощности оборудования. Определяющий параметр – толщина и свойства разрезаемого материала.
  • Мобильность конструкции и ее габариты.
  • Продолжительность непрерывного реза.
  • Бюджет.

Последний показатель не должен влиять на качество, а главное – безопасность работы самодельного плазменного резака. Рекомендуется использовать максимум компонентов заводского изготовления.

Инверторный сварочный аппарата – это источник дуги для розжига плазмы. Также он применяется по прямому назначению – формирование соединительных швов. Для комплектации плазмореза нужно приобретать только заводские модели, так как самодельные не смогут обеспечить стабильность работы.

Для обеспечения мобильности нужно купить инвертор с функцией аргонодуговой сварки. В его конструкции предусмотрено место для подключения шланга от источника воздуха или инертного газа. Средняя стоимость – 19 500 рублей.

Дополнительно потребуются следующие компоненты:

  • Резак с функцией подачи электричества, проволоки (электрода) и воздуха.
  • Компрессор. Он нужен для нагнетания газа, альтернатива – заправленные баллоны.
  • Кабель-шланговый пакет. Это магистрали для электричества, воздушный шланг и устройство для подачи проволоки.

Из всего перечня сделать своими руками можно только ручку для резака. Именно она чаще всего выходит из строя из-за постоянного температурного воздействия. Размеры и эксплуатационные свойства остальных компонентов должны отвечать стандартам качества.

Пошаговая инструкция по сборке

По сути плазморез не изготавливается, а собирается из вышеописанных элементов. Предварительно проверяется возможность подключения отдельных компонентов, уточняются режимы работы – величина подаваемого тока от инвертора, интенсивность воздушной струи, температура плазмы.

Дополнительно нужно использовать манометр для контроля давления в воздушной магистрали. Оптимальный вариант расположения – на корпусе . На держателе он будет мешать точному формированию реза.

Порядок работы:

  1. Проверить питание инвертора.
  2. Проконтролировать герметичность воздушной магистрали.
  3. Установить давление струи инертного газа на требуемый уровень.
  4. Подключить отрицательный электрод инвертора к заготовке.
  5. Проверка дуги, активация подачи воздуха.
  6. Плазменная резка.

Ширина реза должна быть небольшой, без существенной деформации металла по краям. Максимальная толщина обрабатываемого материала — до 3 мм. При увеличении этого параметра инвертор заменяется на более мощный трансформатор.

В процессе резания возникают проблемы – отсутствие комплектующих, нестабильный режим установки. Вероятные последствия – невозможность продолжать работу, некачественный рез. Выход – тщательно подготовиться к этому мероприятию.

  • Запасные прокладки для воздушной магистрали. Частое переключение приводит к их стиранию и потере герметичности.
  • Качество сопла. При длительном температурном воздействии оно может засориться, изменить геометрию.
  • Электроды только из тугоплавких материалов.
  • Причина поломки самодельных резаков – возникновение 2-х воздушных вихрей, что приводит к деформации сопла.
  • Обязательно выполнять работы только в защитной одежде.

Плазморез своими руками из инвертора не так сложно собрать. Важно предусмотреть наличие следующих элементов:

  • плазмотрон, т. е. непосредственно ;
  • источник питания, в качестве которого выступает сварочный инвертор (можно применять и трансформатор);
  • компрессор для подачи воздушной струи охлаждения и формирования плазменного потока;
  • кабель-шланги для сборки и подключения отдельных элементов в единую систему.

Плазморез можно использовать не только для резки различных деталей, но и для сварки.

Плазменный самодельный резак можно использовать для выполнения различных работ. Это не только производство, но и бытовые работы, например, обработка различных металлических заготовок, где требуется точный тонкий и высококачественный рез. Есть модели, которые можно использовать для сварки в защищенной газовой среде с использованием аргона.

При сборке внимание следует уделить силе тока. Величина зависит от источника питания, предпочитают использовать инвертор. Он обеспечивает более стабильную работу, энергопотребление экономнее, чем у трансформатора, хотя толщина заготовок, с которыми он может работать, ниже. Почему именно инвертор? Все дело в том, что он удобнее в работе, чем трансформатор. Его вес меньше, он не такой массивный. Электроэнергии потребляется меньше, при этом КПД выше на 10%, что положительным образом сказывается на качестве работы.

Схемы для сборки можно использовать уже готовые, если покупаются элементы конструкции все вместе. Можно ее взять из сети, особенно когда все детали уже есть и покупать ничего не требуется. При сборке внимание следует уделять точности и четкости соответствия схеме, соединению отдельных элементов. Сопло следует брать длинным, но не слишком, так как его придется быстро заменять.

Выбор конструктивных элементов

Изготовление плазмореза своими руками из инвертора требует наличия таких элементов:

  1. Источник питания для оборудования, в этом качестве и выступает инвертор, обеспечивающий подачу тока с необходимыми характеристиками на плазморез. Вместо инвертора, если его нет в наличии или невозможно найти, можно использовать трансформатор.
  2. Если вместо инвертора выбирается трансформатор, необходимо учесть его большой вес и слишком высокое потребление электроэнергии.
  3. Плазмотрон, т. е. плазменный резак, который является основным элементом конструкции.
  4. Воздушный компрессор и кабель-шланговый пакет.

Что выбрать в качестве источника тока для сборки плазмореза? Трансформатор – не самый лучший вариант по целому ряду причин. Дело не только в его большом весе, что затрудняет использование оборудования после сборки, но и в слишком большом потреблении электроэнергии. Устройство получается слишком затратным. Из преимуществ следует отметить слабую чувствительность к перепадам напряжения в сети во время работы. Таким оборудованием можно резать различные заготовки, толщина которых значительная.

Инвертор в качестве источника питания является более предпочтительным, он экономнее, его стоимость ниже . Кроме того, вес инвертора гораздо меньше, устройство после сборки в использовании проще. Но толщина заготовок не может быть слишком большой. Такие плазменные резаки можно использовать в домашних мастерских, на небольшом производстве, так как мощности вполне хватает для такого «скромного» производства. Есть и еще одно преимущество в пользу первого. Это уровень КПД, который у инверторного резака примерно на 30% выше, дуга отличается более стабильными показателями, резка получается качественнее. Удобнее такое оборудование и для работы в труднодоступных местах, где трансформаторные использовать не получается. Плазмотрон – главный элемент резака, его конструкция включает в себя сопло, канал подачи воздуха (сжатого для обеспечения резки), электрод, изолятор/охладитель.

Вернуться к оглавлению

Сборка плазменного резака

Для плазмотрона необходимо подобрать электрод, можно приобрести из тория, бериллия, циркония либо гафния. Такие материалы являются оптимальными для обеспечения резки воздушно-плазменного типа. На поверхности электродов в процессе резки возникают так называемые тугоплавкие оксиды, они не дают электроду разрушаться. При выборе следует помнить, что некоторые их этих металлов опасны для сварщика. Бериллий вызывает образование радиоактивных оксидов, а торий – токсичных. Лучше всего использовать гафний, он абсолютно безопасен для оператора.

При сборке внимание следует уделить соплу, при помощи которого формируется струя для резки. От диаметра сопла зависят характеристики струи, время резки, ширина резки. Лучше всего использовать изделия диаметром в 3 см, длина его должна быть значительной, чтобы рез получился более качественным и аккуратным. Однако брать слишком длинное сопло нельзя, оно быстро разрушается.

Для подачи воздуха конструкции необходим компрессор. Особенности работы резака предполагают, что использоваться будут газы для защиты и плазмообразования, при этом работа проводится при силе тока в 200 А, но не больше. Для функционирования устройства используется сжатый воздух, он необходим для охлаждения оборудования в процессе работы и для формирования плазмы. Такой вариант позволяет резать заготовки, толщина которых составляет 50 мм. Для промышленного оборудования сжатый воздух не используется, здесь применяются кислород, гелий, водород, аргон, азот, их смеси.

Для соединения источника питания, плазмотрона и компрессора применяется специальный кабель-шланговый пакет. Порядок сборки такой:

  1. Инвертор (или трансформатор) электрическим кабелем соединяется с электродом для создания дуги.
  2. Через шланг от компрессора подается сжатый воздух, он образует плазменную струю внутри плазмотрона.

Вернуться к оглавлению

Как работает плазменный резак?

После того как плазменный резак собран, надо проверить его работоспособность. При включении инвертор начинает подавать ток на плазмотрон с высокой частотой. Появляется дуга, ее температура в этот момент составляет от 6000°С до 8000°С, зажигается она между наконечником сопла и рабочим электродом. Далее в камеру начинает поступать сжатый воздух, он из патрубка проходит через электродугу, нагревается, в объеме увеличивается до 100 раз. Струя приобретает токопроводящие свойства, ионизируется.

Соплом формируется узкий рабочий поток, скорость которого равна 2-3 м/сек. Температура в это время сильно повышается, может достигать от 25000°С до 30000°С. На выходе образуется высокотемпературная плазма, используемая для резки. При соприкосновении плазмы и детали дежурная первоначальная дуга гаснет, а зажигается уже режущая, которая обрабатывает деталь локально. Металл плавится только в месте реза, потоком воздуха все металлические расплавленные частички сдуваются.

Использование такого резака из обычного сварочного инвертора позволяет получить аккуратные резы в металлических заготовках. При работе необходимо следить, чтобы пятно дуги находилось строго по центру катода/электрода, для чего используется так называемая тангенциальная подача рабочего воздушного потока. Если при работе такой воздушный вихревой поток будет нарушен, то работать устройство начнет нестабильно, качество реза сильно ухудшится. Важно, чтобы при работе не образовывалось сразу две дуги, в этом случае аппарат просто выйдет из строя. Нельзя, чтобы плазменный резак имел слишком сильный поток воздуха.

Скорость, обеспечивающая хорошее качество, равна 800 м/сек, но при этом сила тока должна составлять до 250 А, не выше.

Но надо учесть, что расход воздуха будет увеличен.

Плазменный резак, в качестве главного элемента которого используется инвертор для дуговой сварки, применяется для реза металлических заготовок. Сборка простая, конструкция включает себя такие элементы, как источник тока, сопло, плазменный резак, компрессор. При сборке следует сразу определиться с источником питания, вместо инвертора некоторые предпочитают трансформатор. Все преимущества и недостатки устройств были описаны выше, вам остается только сделать выбор.

Все чаще в небольших частных мастерских и на маленьких предприятиях используют аппараты плазменной резки металла вместо болгарок и других аппаратов. Воздушно-плазменная резка позволяет выполнять качественные прямые и фигурные резы, выравнивать кромки листового металла, делать проемы и отверстия, в том числе и фигурные, в металлических заготовках и другие более сложные работы. Качество получившегося реза просто великолепно, он получается ровным, чистым, практически без окалины и заусениц, а также аккуратным. С помощью технологии воздушно-плазменной резки можно обрабатывать практически все металлы, а также нетокопроводящие материалы, такие как бетон, керамическая плитка, пластик и дерево. Все работы выполняются быстро, заготовка нагревается локально, только в области реза, поэтому металл заготовки не меняет своей геометрии вследствие перегрева. С аппаратом плазменной резки или как его еще называют - плазморезом сможет справиться даже новичок без опыта сварки. Но чтобы результат не разочаровал, все же не помешает изучить устройство плазмореза, понять его принцип действия, а также изучить технологию, как работать аппаратом воздушно-плазменной резки.

Устройство аппарата воздушно-плазменной резки

Знание устройства плазмореза позволит не только более осознанно производить работы, но и создать самодельный аналог, для чего необходимы не только более глубокие знания, но и желательно инженерский опыт.

Аппарат воздушно-плазменной резки состоит из нескольких элементов, среди которых:

  • Источник питания;
  • Плазмотрон;
  • Кабель-шланговый пакет;
  • Воздушный компрессор.

Источник питания для плазмореза служит для того, чтобы преобразовывать напряжение и подавать на резак/плазмотрон определенную силу тока, благодаря чему загорается электрическая дуга. В качестве источника питания могут выступать трансформатор или инвертор.

Плазмотрон - основной элемент аппарата воздушно-плазменной резки, именно в нем происходят процессы, благодаря которым появляется плазма. Плазмотрон состоит из сопла, электрода, корпуса, изолятора между соплом и электродом и каналов для воздуха. Такие элементы как электрод и сопло являются расходными материалами и требуют частой замены.

Электрод в плазмотроне является катодом и служит для возбуждения электрический дуги. Самым распространенным металлом, из которого делают электроды для плазмотронов, является гафний.

Сопло имеет конусообразную форму, обжимает плазму и формирует плазменную струю. Вырываясь из выходного канала сопла, плазменная струя дотрагивается до заготовки и разрезает ее. Размеры сопла влияют на характеристики плазмореза, его возможности и технологию работы с ним. Самый распространенный диаметр сопла - 3 - 5 мм. Чем больше диаметр сопла, тем больший объем воздуха в единицу времени оно можно пропустить через себя. От количества воздуха зависит ширина реза, а также скорость работы плазморезом и скорость охлаждения плазмотрона. Самая распространенная длина сопла 9 - 12 мм. Чем больше длина сопла, тем аккуратнее рез. Но слишком длинное сопло больше подвержено разрушению, поэтому оптимально длину увеличивают на размер, равный 1,3 - 1,5 диаметра сопла. Следует учитывать, что каждому значению силы тока соответствует оптимальный размер сопла, который обеспечивает стабильное горение дуги и максимальные параметры резки. Уменьшать диаметр сопла и делать менее 3 мм нецелесообразно, так как значительно снижается ресурс всего плазмотрона.

Компрессор подает сжатый воздух в плазмотрон для образования плазмы. В аппаратах воздушно-плазменной резки воздух выступает в качестве и плазмообразующего газа, и защитного. Существуют аппараты со встроенным компрессором, как правило, они маломощные, а также аппараты с внешним воздушным компрессором.

Кабель-шланговый пакет состоит из электрокабеля, соединяющего источник питания и плазмотрон, а также шланга для подачи воздуха от компрессора в плазмотрон. Что конкретно происходит внутри плазмотрона, рассмотрим ниже.

Принцип работы аппарата воздушно-плазменной резки

Установка воздушно плазменной резки работает по описанному ниже принципу. После нажатия кнопки розжига, которая находится на ручке плазмотрона, от источника питания на плазмотрон начинает подаваться ток высокой частоты. В результате загорается дежурная электрическая дуга. По причине того, что образование электрической дуги между электродом и заготовкой напрямую затруднительно, то в качестве анода выступает наконечник сопла. Температура дежурной дуги составляет 6000 - 8000 °С, а столб дуги заполняет весь канал сопла.

Спустя пару секунд после розжига дежурной дуги в камеру плазмотрона начинает подаваться сжатый воздух. Он проходит сквозь дежурную электрическую дугу, ионизируется, нагревается и увеличивается в объеме в 50 - 100 раз. Форма сопла плазмотрона заужена книзу, благодаря чему воздух обжимается, из него формируется поток, который вырывается из сопла со скоростью, близкой к звуковой - 2 - 3 м/с. Температура ионизированного разогретого воздуха, вырывающегося из выходного отверстия сопла, может достигать 20000 - 30000 °С. Электропроводность воздуха в этот момент примерно равна электропроводности обрабатываемого металла.

Плазмой как раз и называется разогретый ионизированный воздух, вырывающийся из сопла плазмотрона. Как только плазма достигает поверхности обрабатываемого металла, зажигается рабочая режущая дуга, в этот момент дежурная дуга гаснет. Режущая дуга разогревает заготовку в месте соприкосновения, локально, металл начинает плавиться, появляется рез. Расплавленный металл вытекает на поверхность заготовки и застывает в виде капель и мелких частичек, которые тут же сдуваются потоком плазмы. Данный способ воздушно-плазменной резки называют резкой плазменной дугой (дуга прямого действия), так как обрабатываемый металл входит в электрическую схему и является анодом режущей дуги.

В описанном выше случае для разрезания заготовки используется энергия одного из приэлектродных пятен дуги, а также плазмы столба и вытекающего из него факела. Для резки плазменной дугой используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка металла используется в таких случаях: если необходимо изготовить детали с фигурными контурами из листового металла, или изготовить детали с прямыми контурами, но так, чтобы не пришлось обрабатывать контуры дополнительно, для резки труб, полос и прутов, для вырезки отверстий и проемов в деталях и другого.

Но также есть еще один способ плазменной резки - резка плазменной струей . В таком случае режущая дуга загорается между электродом (катодом) и наконечником сопла (анодом), а обрабатываемая заготовка не включена в электрическую цепь . Часть плазмы выносится из плазмотрона в виде струи (дуга косвенного действия). Обычно такой способ резки используют для работы с неметаллическими нетокопроводящими материалами - бетоном, керамической плиткой, пластмассой.

Подача воздуха в плазмотрон прямого действия и косвенного действия производится по-разному. Для резки плазменной дугой требуется аксиальная подача воздуха (прямая) . А для резки плазменной струей требуется тангенциальная подача воздуха.

Тангенциальная или вихревая (осевая) подача воздуха в плазмотрон необходима для того, чтобы катодное пятно располагалось строго по центру. Если тангенциальная подача воздуха нарушена, неизбежно смещение катодного пятна, а с ним и плазменной дуги. В результате плазменная дуга горит не стабильно, иногда загорается две дуги одновременно, а также весь плазмотрон выходит из строя. Воздушно-плазменная резка самодельная не способна обеспечить тангенциальную подачу воздуха. Так как для устранения турбулентностей внутри плазмотрона используют сопла специальной формы, а также вкладыши.

Сжатый воздух используется для воздушно-плазменной резки таких металлов:

  • Меди и сплавов меди - толщиной не более 60 мм;
  • Алюминия и сплавов алюминия - толщиной до 70 мм;
  • Стали толщиной до 60 мм.

А вот для резки титана воздух использовать категорически нельзя. Более детально тонкости работы аппаратом ручной воздушно-плазменной резки рассмотрим ниже.

Как выбрать аппарат воздушно-плазменной резки

Чтобы сделать правильный выбор плазмореза для частных бытовых нужд или маленькой мастерской, необходимо точно знать для каких целей он будет использоваться. С какими заготовками придется работать, из какого материала, какой толщины, какова интенсивность загрузки аппарата и многое другое.

Для частной мастерской вполне может сгодиться инвертор, так как у таких аппаратов более стабильная дуга и больший на 30 % КПД. Трансформаторы подходят для работы с заготовками большей толщины и не боятся перепадов напряжения, но при этом они больше весят и менее экономичны.

Следующая градация - плазморезы прямого и косвенного действия. Если планируется резать только металлические заготовки, то необходим аппарат прямого действия.

Для частной мастерской или домашних нужд необходимо приобретать ручной плазморез с встроенным или внешним компрессором, рассчитанный на определенную силу тока.

Сила тока плазмореза и толщина металла

Сила тока и максимальная толщина заготовки - основные параметры для выбора аппарата воздушно-плазменной резки. Они взаимосвязаны между собой. Чем большую силу тока может подавать источник питания плазмореза, тем более толстую заготовку можно обрабатывать с помощью данного аппарата.

Выбирая аппарат для личных нужд, необходимо точно знать, какой толщины заготовки будут обрабатываться и из какого металла. В характеристиках плазморезов указывается и максимальная сила тока, и максимальная толщина металла. Но обратите внимание на то, что толщина металла указана из расчета на то, что обрабатываться будет черный металл, а не цветной и не нержавейка. А сила тока указана не номинальная, а максимальная, на данных параметрах аппарат может работать совсем непродолжительное время.

Для резки разных металлов требуется различная сила тока. Точные параметры можно увидеть в таблице ниже.

Таблица 1. Сила тока, необходимая для резки различных металлов.

Например, если планируется резать стальную заготовку толщиной 2,5 мм, то необходима сила тока 10 А. А если заготовка выполнена из цветного металла, например, меди толщиной 2,5 мм, то сила тока должна быть 15 А. Чтобы рез получился высокого качества, необходимо учитывать некий запас мощности, поэтому лучше приобрести плазморез, рассчитанный на силу тока в 20 А.

На аппарат воздушно-плазменной резки цена напрямую зависит от его мощности - выдаваемой силы тока. Чем больше сила тока, тем дороже аппарат.

Режим работы - продолжительность включения (ПВ)

Режим работы аппарата определяется интенсивностью его загрузки. На всех аппаратах указан такой параметр, как продолжительность включения или ПВ. Что она означает? Например, если указана ПВ=35%, то это означает, что плазморезом можно работать 3,5 минуты, а затем ему необходимо дать остыть в течение 6,5 минут. Цикл продолжительности включения рассчитан на 10 минут. Есть аппараты с ПВ 40%, 45%, 50%, 60%, 80%, 100%. Для бытовых нужд, где аппарат не будет использоваться постоянно, достаточно аппаратов с ПВ от 35% до 50%. Для машинной резки с ЧПУ используются плазморезы с ПВ=100%, так как они обеспечивают непрерывную работу в течение всей смены.

Обратите внимание, что в процессе работы с ручной воздушно-плазменной резкой существует необходимость переместить плазмотрон или перейти на другой конец заготовки. Все эти интервалы учитываются в счет времени охлаждения. Также продолжительность включения зависит от загрузки аппарата. Например, с начала смены даже плазморез с ПВ=35% может без перерыва работать 15 - 20 минут, но чем чаще им будут пользоваться, тем короче будет время беспрерывной работы.

Воздушно-плазменная резка своими руками - технология работы

Плазморез выбрали, с принципом работы и устройством ознакомились, пора приступать к работе. Чтобы не наделать ошибок, для начала не помешает ознакомиться с технологией работы с аппаратом воздушно-плазменной резки. Как соблюсти все меры безопасности, как подготовить аппарат к работе и правильно подобрать силу тока, а затем, как разжечь дугу и соблюдать необходимую дистанцию между соплом и поверхностью заготовки.

Позаботьтесь о безопасности

Воздушно-плазменная резка сопряжена с рядом опасностей: электрический ток, высокая температура плазмы, раскаленный металл и ультрафиолетовое излучение.

  • Работать необходимо в специальной экипировке: темные очки или щиток сварщика (4 - 5 класс затемнения стекла), плотные перчатки на руках, штаны из плотной ткани на ногах и закрытая обувь. При работе с резаком могут образовываться газы, которые представляют угрозу для нормальной работы легких, поэтому на лицо необходимо надевать маску или респиратор.
  • Плазморез подключается в сеть через УЗО.
  • Розетки, рабочая подставка или стол, окружающие предметы должны быть хорошо заземлены.
  • Силовые кабели должны быть в идеальном состоянии, не допускается повреждение обмотки.

То, что сеть должна быть рассчитана на то напряжение, которое указано на аппарате (220 В или 380 В), это само собой разумеющееся. В остальном же соблюдение техники безопасности поможет избежать травм и профзаболеваний.

Подготовка аппарата воздушно-плазменной резки к работе

Как подключить все элементы аппарата воздушно-плазменной резки, подробно описано в инструкции к аппарату, поэтому сразу перейдем к дальнейшим нюансам:

  • Аппарат необходимо установить так, чтобы к нему был доступ воздуха. Охлаждение корпуса плазмореза позволит дольше работать без перерыва и реже отключать аппарат для охлаждения. Место расположения должно быть таким, чтобы на аппарат не попадали капли расплавленного металла.
  • Воздушный компрессор подключается к плазморезу через влаго- и маслоотделитель. Это очень важно, так как попавшие в камеру плазмотрона вода или капли масла могут привести к выходу из строя всего плазмотрона или даже его взрыву. Давление подаваемого в плазмотрон воздуха должно соответствовать параметрам аппарата. Если давление будет недостаточным, то плазменная дуга будет нестабильной, часто будет гаснуть. Если давление будет избыточным, то могут придти в негодность некоторые элементы плазмотрона.
  • Если на заготовке, которую собираетесь обрабатывать, есть ржавчина, окалина или масляные пятна, их лучше отчистить и удалить. Хоть воздушно-плазменная резка и позволяет резать ржавые детали, все же лучше перестраховаться, так как при нагреве ржавчины выделяются ядовитые пары. Если планируется резать емкости, в которых хранились горючие материалы, то их необходимо тщательно отчистить.

Чтобы рез получился ровным, параллельным, без окалины и наплывов, необходимо правильно подобрать силу тока и скорость резки. В представленных ниже таблицах указаны оптимальные параметры резки различных металлов различной толщины.

Таблица 2. Сила и скорость резки с помощью аппарата воздушно-плазменной резки заготовок из различных металлов.

Первое время подбирать скорость ведения резака будет сложно, необходим опыт. Поэтому поначалу можно ориентироваться на такое правило: вести плазмотрон необходимо так, чтобы с обратной стороны заготовки были видны искры. Если искр не видно, значит, заготовка не разрезана насквозь. Обратите также внимание, что слишком медленное ведение резака негативно сказывается на качестве реза, на нем появляются окалина и наплывы, а также может нестабильно гореть дуга и даже гаснуть.

Теперь можно приступать к самому процессу резки.

Перед тем как зажечь электрическую дугу, плазмотрон следует продуть воздухом, чтобы удалить случайный конденсат и инородные частицы. Для этого необходимо нажать, а затем отпустить кнопку поджига дуги. Так аппарат переходит в режим продувки. Спустя примерно 30 секунд можно нажимать кнопку поджига и удерживать ее. Как уже описывалось в принципе работы плазмореза, между электродом и наконечником сопла загорится дежурная (вспомогательная, пилотная) дуга. Как правило, она горит не долее 2 секунд. Поэтому за это время необходимо зажечь рабочую (режущую) дугу. Способ зависит от вида плазмотрона.

Если плазмотрон прямого действия, то необходимо сделать короткое замыкание: после образования дежурной дуги необходимо нажать кнопку розжига - прекращается подача воздуха и контакт замыкается. Затем воздушный клапан открывается автоматически, поток воздуха вырывается из клапана, ионизируется, увеличивается в размерах и выводит искру из сопла плазмотрона. В результате загорается рабочая дуга между электродом и металлом заготовки.

Важно! Контактный поджиг дуги не означает, что плазмотрон необходимо прикладывать или прислонять к заготовке.

Как только загорится режущая дуга, дежурная дуга гаснет. Если не получилось зажечь рабочую дугу с первого раза, необходимо отпустить кнопку розжига и нажать ее снова - начнется новый цикл. Причин, по которым может не зажигаться рабочая дуга, несколько: недостаточное давление воздуха, неправильная сборка плазмотрона или другие неполадки.

В процессе работы также бывают случаи, когда режущая дуга гаснет. Причина, скорее всего, в изношенности электрода или несоблюдении расстояния между плазмотроном и поверхностью заготовки.

Расстояние между горелкой плазмотрона и металлом

Ручная воздушно-плазменная резка сопряжена с той трудностью, что необходимо соблюдать расстояние между горелкой/соплом и поверхностью металла. При работе рукой это довольно сложно, так как даже дыхание сбивает руку, и рез получается неровным. Оптимальное расстояние между соплом и заготовкой 1,6 - 3 мм, для его соблюдения используются специальные дистанционные упоры, ведь сам плазмотрон нельзя прижимать к поверхности заготовки. Упоры надеваются сверху на сопло, затем плазмотрон опирается упором на заготовку и выполняется рез.

Обратите внимание, что держать плазмотрон необходимо строго перпендикулярно заготовке. Допустимый угол отклонения 10 - 50 °. Если заготовка слишком тонкая, то резак можно держать под небольшим углом, это позволит избежать сильных деформаций тонкого металла. Расплавленный металл при этом не должен попадать на сопло.

Работы с воздушно-плазменной резкой своими руками вполне можно осилить самостоятельно, только важно помнить о технике безопасности, а также о том, что сопло и электрод - расходные материалы, которые требуют своевременной замены.

Работу по раскрою металлических листов выполнить не так-то просто без специального оборудования. Поэтому все домашние мастера, который сталкиваются с подобной задачей, должны позаботиться о наличии в своем арсенале такого инструмента, как аппарат ручной плазменной резки. Это оборудование отличается компактными размерами и позволяет в домашних условиях легко разрезать железные листы на фрагменты подходящего размера.

Этот инструмент обладает множеством достоинств, главным из которых является то, что во время разделения заготовок на отрезки владельцу не придется впоследствии заниматься обработкой краев деталей. Чтобы упростить работу с этим оборудованием, нелишним будет каждому домашнему умельцу получить представление о существующих разновидностях этих аппаратов, их конструкции, принципе работы и правилах выбора.

Оборудование для плазменной резки металла

Все многообразие подобных инструментов можно классифицировать на две основные группы:

  • производственного;
  • домашнего назначения.

Особенностью аппаратов, представляющих первую группу, являются большие размеры и значительный вес. В их конструкции предусмотрено ЧПУ (числовое программное управление). Это приспособление упрощает изготовление деталей различных форм.

Работа с таким оборудованием заключается в разработке макета с использованием специального программного обеспечения. Именно на него впоследствии придется ориентироваться во время выполнения работы. После этого созданный в требуемом формате файл поступает на машину , а там уже выполняется его отрезание. Стоит заметить, что подобное оборудование недешево: цена на эти агрегаты может достигать десятков тысяч долларов.

Более простое устройство имеют аппараты, предназначенные для плазменной резки в домашних условиях. По своему исполнению они имеют вид компактного блока , который работает от электроэнергии и дополнен такими компонентами, как шланг и наконечник, обеспечивающие электрическую дугу. Именно благодаря ей и выполняется резка.

Также дуга позволяет разделять железные листы и обеспечивать высокое качество краев. Учитывая, что для разрезания заготовки используется необычный инструмент в виде ножовки или диска, владельцу не придется тратить время и силы на дополнительную шлифовку деталей. Оборудование для домашнего использования привлекательно тем, что его можно перевозить в любое место, а также хранить и использовать на протяжении длительного времени.

Предлагаемые на рынке модели устройств для плазменной резки рассчитаны на работу с различными видами материалов, что определяется типа газа, который имеется в механизме. При помощи воздушно-плазменного типа установок можно заниматься резкой заготовок из черных металлов и их сплавов . Если возникла задача по разделению деталей из цветных металлов и их комбинаций, желательно применять оборудование, где используются неактивные элементы наподобие водорода, азота или аргона. Однако к подобному варианту газовой резки в бытовых условиях прибегают нечасто.

Отличие аппаратов прямого и косвенного действия

Сегодня можно найти различные варианты ручных аппаратов, в которых реализован различный принцип функционирования. Работа установок прямого действия основывается на использовании электрической дуги. Последняя выглядит как цилиндр , и к ней непосредственно подведена струя газа. Благодаря подобной конструкции дуга нагревается до высоких температур порядка 20 000 градусов. И в то же время она способна эффективно охлаждать прочие элементы устройства.

Если говорить об установках косвенного действия, то их особенностью является меньший КПД. Именно этим и обусловлено то, что к ним прибегают не так часто.

Говоря про их устройство, следует отметить, что основная цель здесь заключается в размещении активных точек цепи на трубе либо специальном вольфрамовом электроде . Оборудование косвенного действия получило распространение для напыления, нагрева металлических устройств, причем в качестве режущего оборудования их не используют. В большинстве своем с помощью подобного ручного механизма выполняют ремонт автомобильных узлов, не прибегая к извлечению их из корпуса.

При этом подобным установкам присуща одна общая особенность: они способны работать только при наличии воздушных фильтров и охладителей. Польза от первых заключается в увеличении срока службы катода и анода, ускорении запуска механизма, который эксплуатируется довольно долго.

Что же касается второго элемента, то он необходим для увеличения эксплуатационного ресурса аппарата, работающего в непрерывном режиме. Оптимально, когда в течение часа беспрерывной резки этим аппаратом выделяют на отдых порядка 20 минут. Эти характеристики являются очень важными и должны учитываться вне зависимости от типа исполнения выбираемого устройства.

Конструкция ручного плазмореза

Возможность выполнять свою функцию подобному аппарату обеспечивает подача сильно нагретого воздуха на металлический лист. В условиях температуры, достигающей нескольких десятков тысяч градусов, при которой происходит нагрев кислорода , последний под большим давлением поступает на поверхность, что приводит к ее резке.

Более быстрое выполнение этой операции обеспечивается с учетом ионизации электрическим током. Продлить срок службы подобного оборудования можно при условии, что в его оснащении будут присутствовать следующие элементы:

  • Плазмотрон . Имеет вид резака, в обязанности которого входит выполнение основных задач;
  • Плазморез . Это устройство может быть выполнено в варианте прямого или косвенного воздействия;
  • Сопло . Это приспособление превосходит по функциональности все прочие элементы оборудования. Оно дает понять, для выполнения резки какой сложности предназначена конкретная модель;
  • Электроды . Ими оснащаются отдельные виды устройств;
  • Компрессор . С его помощью создается мощный воздушный поток.

Как сделать плазморез из инвертора - инструкция

При желании подобное оборудование в состояние изготовить своими руками любой владелец. Однако, чтобы самодельный плазморез смог эффективно выполнять свою работу, необходимо соблюсти все правила. В подобном деле инвертор будет практически незамени м, так как при помощи этого устройства будет обеспечена надежная подача тока. За счет него в работе плазмореза не будет возникать перебоев, а также удастся уменьшить расход электроэнергии. Однако при этом у него имеются и недостатки: он рассчитан на резку материала меньшей толщины, нежели при использовании трансформатора.

Выбор элементов

Если вы решили самостоятельно изготовить плазморез, то вам следует подготовить необходимые материалы и оборудование:

Сборка

Еще до начала сборки самодельного плазмореза не помешает выяснить, совместимы ли компоненты, приобретенные вами между собой. Если вам ранее не приходилось изготавливать своими руками аппарат плазменной резки, то желательно обратиться за помощью к более опытным мастерам.

Проведя анализ мощности каждого необходимого элемента, они дадут вам свою рекомендацию. Обязательно стоит позаботиться о наличии защитного комплекта одежды . Его вам придется использовать, когда настанет время проверить работоспособность самодельного плазмореза. Если говорить о процедуре сборки оборудования для плазменной резки, то она включает в себя следующие этапы:

Вне зависимости от того, планируете ли вы изготавливать плазморез своими руками или же приобрести его в магазине, вначале следует изучить все модели, познакомиться с принципами их работы и вариантами исполнения. Важным моментом является и тип материала, который планируется в дальнейшем резать с помощью этого оборудования. Упростить себе задачу по выбору вы сможете, если вначале посмотрите видео, в котором показывается принцип действия аппарата ручной плазменной резки и технология работы с ним.

Средняя стоимость оборудования

Сегодня в магазинах представлено большое количество оборудования для ручной резки металлов, которые предлагаются по различным ценам. Причем на стоимость этих аппаратов будут оказывать влияние несколько факторов:

Избежать ошибок на этапе выбора инструмента для резки металлов можно при условии, что вы посетите несколько магазинов и сравните условия, на которых вам готовы продать это оборудование. Рассматривая различные модели плазморезов , сразу следует поинтересоваться ценами на комплектующие, без которых не обойтись, если придется выполнять ремонт этого оборудования. В среднем цены запасные части к плазморезам с учетом толщины среза находятся в следующем диапазоне:

  • При толщине не более 30 мм – 150–300 тыс. руб.;
  • При толщине не более 25 мм – 81–220 тыс. руб.;
  • При толщине не более 17 мм – 45–270 тыс. руб.;
  • При толщине не более 12 мм – 32–230 тыс. руб.;
  • При толщине не более 10 мм – 25–20 тыс. руб.;
  • При толщине не более 6 мм – 15–200 тыс. руб.

Заключение

Оборудование для плазменной резки металлов является высокотехнологичным устройством, которое способно заметно упростить выполнение работы по разрезанию различных металлических изделий. Причем отнюдь не обязательно приобретать дорогое оборудование в магазине, каждый владелец может изготовить этот аппарат своими силами.

Для этого достаточно подготовить все необходимое оборудование и в точности следовать технологии сборки плазмореза. Даже изготовленный своими руками плазморез способен обеспечить такое же качество резки стальных деталей, как и оборудование, предлагаемое в магазинах.