Соединение стабилитронов последовательно. Стабилитрон: подробно простым языком

Соединение стабилитронов последовательно. Стабилитрон: подробно простым языком

Является разновидностью диода, но имеет уникальное свойство – при обратном включении он открывается при определенном, строго заданном напряжении и начинает пропускать ток. Пока этот ток лежит в определенном пределе, на стабилитроне устанавливается постоянное напряжение. Это позволяет использовать стабилитроны для получения стабильного напряжения, которое необходимо для питания очень многих электронных устройств.

Итак, в нашем распоряжении стабилитрон, к примеру, КС156, набор резисторов и источник постоянного напряжения, величину которого можно регулировать в диапазоне 0…12 В. Соберем следующую схему:

Выкручиваем ручку регулировки блока питания в «0» и подключаем к нему нашу схему, соблюдая полярность. Напряжение на стабилитроне равно нулю, ток через него, ясное дело, тоже не течет. Начинаем увеличивать напряжение. 2 В, затем 3 В. Тока через стабилитрон все еще нет. Продолжаем увеличивать и замечаем, что ток появился – наш стабилитрон открылся.

При дальнейшем повороте ручки ток продолжает расти, напряжение на стабилитроне остается неизменным (в нашем случае – 5.6 В). Увеличиваем еще напряжение и в какой-то момент времени ток исчезает, напряжение на стабилитроне скачком поднимается до напряжения блока питания – наш стабилитрон пробит окончательно и бесповоротно или, как говорят, «сгорел». Стабилитрона мы лишились, но в нашем распоряжении есть полезная информация которую и рассмотрим:

Iст.мин – ток стабилизации минимальный. Минимальный ток, при котором напряжение на стабилитроне перестало расти (прибор вошел в режим стабилизации)
Iст.макс – максимально допустимый ток через стабилитрон. Ток, при котором стабилитрон еще работает, но если его увеличить, прибор сгорит.
Uст – напряжение стабилизации. Напряжение на стабилитроне, которое остается неизменным, пока через стабилитрон течет ток в диапазоне Iст.мин … Iст.макс.

Все эти данные мы получили ценой жизни пусть несложного и недорогого, но прибора. Тем не менее, их совсем несложно получить из справочной литературы, зная тип стабилитрона. Открываем справочник по стабилитронам и смотрим:

КС456А:
Iст.мин – 1 мА;
Iст.макс – 139 мА;
Uст — 5.6 В;
Iст.ном – 30 мА.

У нас даже появилась дополнительная информация: Iст.ном — номинальный ток стабилизации. Именно при таком токе стабилитрон будет работать в оптимальном режиме – если сетевое напряжение начнет «прыгать», то прибор не выйдет из режима стабилизации и не сгорит, а будет продолжать выдавать 5.6 В.

Выпускаются стабилитроны, конечно, на разное напряжение – от единиц и долей до десятков и даже сотен вольт, кроме того, для получения необходимого напряжения стабилизации приборы можно соединять последовательно, но с таким расчетом, чтобы ток через них укладывался в диапазон стабилизации для обоих стабилитронов. При последовательном соединении напряжения стабилизации складываются, параллельно стабилитроны включать нельзя . Почему? В этом несложном вопросе, я думаю, вы разберетесь сами.

Собранная нами схема, по сути, является готовым стабилизатором напряжения, но питать она может только не очень прожорливые схемы, потребляющие единицы, максимум десяток мА. В противном случае изменение сопротивления нагрузки просто выведет стабилитрон из режима. Для получения более мощного стабилизированного источника питания придется схему усложнить, что мы и сделаем в следующий раз.

Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне

остается практически постоянным, поэтому и напряжение на нагрузке постоянно U Н = U ст – const. При этом уравнение для всей цепи имеет вид: E = U ст + R ст (I ст – I Н).

Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а R Н – const. Для поддержания режима стабилизации следует правильно выбрать R СТ. Обычно R СТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что E min £ E £ E max , то

Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем U CT , а, следовательно, и на нагрузке остается практически неизменным.

Все изменения напряжения поглощаются R CT , поэтому должно выполнится условие:

Второй режим стабилизации: входное напряжение постоянно, а R Н изменяется в пределах от R Н min до R Н max , в этом случае: , ; .

Так как R CT постоянно, то падение напряжения на нем равное Е−U CT также постоянно, то и ток через R CT I CP +I Н CP должен быть постоянным. Это возможно, когда ток стабилизации I CP и I Н изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).

Из приведенных выражений следует, что для стабилизации в более широком диапазоне изменений входного напряжения Е, R CT нужно увеличивать, а для стабилизации в режиме изменения тока нагрузки, R CT необходимо уменьшать (уменьшать R CT – не выгодно, тратится лишняя энергия источника).

Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение R доб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки R CT должно быть постоянным.

U Н =U CT ─ I Н R доб

Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).

U CT =U CT 1 +U CT 2

Для компенсации температурного дрейфа U CT последовательно со стабилитроном возможно включение термозависимого сопротивления R T , имеющее ТКR Т обратный по закону ТКU CT .

Для стабилитронов с ТКU CT >0 в качестве R T можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.

Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).

Стабисторы

ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.

Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое r б и малое значение R диф. Слабая зависимость U ПР от I ПР на

рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В. Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.

Туннельные диоды

Туннельные диоды – это полупроводниковые приборы, ВАХ которых имеет участок с отрицательным дифференциальным сопротивлением (рис. 24).

Туннельные диоды изготавливаются из полупроводников с высокой концентрацией примесей. Вследствие этого толщина запирающего слоя p-n-перехода очень мала (0,01¸0,02мкм), что создает условия для туннельного эффекта.

Наличие высокой концентрации примесей вызывает расщепление примесных уровней в зоны и сильное искривление энергетических зон.

При подаче обратного напряжения ток через диод резко увеличивается (туннелирование электронов из p в n область). Это эквивалентно туннельному пробою p-n-перехода.

При подаче прямого смещения возрастает поток электронов туннелированных из n области в p. По мере роста U пр происходит увеличение I пр, который достигает I max при U 1 (0 ¸ 1) (для германиевых диодов U 1 = 40 ¸ 50 мВ; для арсенид галлиевых - U 1 = 100 ¸ 150 мВ). При этих смещениях величина диффузионного тока через потенциальный барьер ничтожна, и I пр определяется только туннельным эффектом. При дальнейшем увеличении U ПР, I ПР уменьшается (перекрытие энергетических зон уменьшается). При U ПР = U 2 туннельный ток равен нулю (1¸2).

Этот участок ВАХ характеризуется отрицательным дифференциальным сопротивлением т.к. DI < 0.

В т.2 I ПР = I min – это обычный прямой диффузионный ток диода. (т.е. в т.2 туннельный диод ведет себя как обычный диод), туннельный эффект закончился.

При дальнейшем увеличении U ПР, I ПР увеличивается (2¸3) за счет роста диффузионного тока – преодоление электронов потенциального барьера.

Основные особенности ВАХ туннельных диодов:

Участок с отрицательным дифференциальным сопротивлением R диф;

Большие токи при обратных смещениях.

Основные параметры:

Ток максимальный I max – соответствует пику ВАХ;

Ток минимальный I min – соответствует минимуму ВАХ;

Напряжение пика U 1 – соответствует току I max ;

Напряжение U 2 – соответствует I min ;

Максимальный I ПР;

U ПР соответствует I ПР max ;

Постоянное обратное напряжение;

Емкость диода.

Туннельные диоды используются в переключающих цепях сверхвысокого быстродействия (до 1000 мГц).

Разновидностью туннельных диодов являются обращенные диоды. Их особенность – это практическое отсутствие участка с отрицательным дифференциальным сопротивлением на прямой ветви ВАХ (рис. 25).

По форме ВАХ обращенного диода представляет перевернутую ВАХ обычного диода.

Открытое состояние для таких диодов соответствует обратному смещению. При обратном смещении ток через диод очень сильно зависит от напряжения. Достоинство – диоды могут работать при очень малых напряжениях.

Они обладают хорошими частотными свойствами, т.к. туннелирование процесс малоинерционный, а смещения малы, поэтому практически отсутствует инжекция и накопление неосновных носителей.

Обращенные диоды используются в диапазоне СВЧ. Достоинством туннельных и обращенных диодов является высокая радиационная стойкость, вследствие высокой концентрации примесей.

Варикапы

Варикап – это полупроводниковый диод, который используется как нелинейная емкость, управляемая напряжением (емкость p-n-перехода – функция приложенного напряжения).

В варикапах используется барьерная емкость, т.к. диффузионная зашунтирована малым прямым сопротивлением p-n-перехода.

Варикап работает при обратных смещениях на p-n-переходе. Его емкость меняется в широких пределах (10¸1000 пФ) и определяется выражением:

,

где С 0 – емкость при U Д = 0, U K – значение контактного потенциала, U – приложенное обратное напряжение, n =2 – для резких p-n переходов, n=3 – для плавных переходов. С ростом U обр емкость уменьшается. Основной характеристикой варикапа является вольт-фарадная характеристика (ВФХ) (рис. 26).

Основные параметры:

Емкость варикапа С в – емкость, измеренная при заданном U обр;

Коэффициент перекрытия по емкости – отношение емкостей при двух заданных U обр; ,

− сопротивление потерь r П – суммарное активное сопротивление варикапа;

− добротность Q B – отношение реактивного сопротивления на заданной частоте Х С к сопротивлению потерь ;

ТКС В – температурный коэффициент С В.

Светоизлучающие диоды

Светоизлучающий диод – это полупроводниковый диод, предназначенный для отображения информации. Светодиод (СИД) получают на основе p-n или гетеропереходов с выпрямляющей ВАХ (рис. 27).

Излучение в области перехода вызвано самопроизвольной рекомбинацией носителей заряда при прохождении прямого тока. При этом рекомбинирующий электрон переходит из ЗП в ВЗ с выделением кванта света с энергией hu »DW 3З. Для получения квантов видимого света ширина ∆W ЗЗ должна составлять DW 3 ³1,7эВ. При DW 3 <1,7эВ излучение находятся в инфракрасном диапазоне.

Такой величиной DW 33 обладают полупроводниковые соединения GaAsP с различным соотношением элементов 1,4

В обычных плоских переходах, кванты света поглощаются в кристалле полупроводника вследствие внутреннего отражения. Поэтому в СИД используют сферическую форму кристалла, либо плоский кристалл полупроводника вплавляют в сферическую каплю стекла или пластика, что снижает эффект внутреннего отражения (рис. 28).


Похожая информация.


  • 6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
  • 7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
  • 22. Характеристики выключения тиристора, время выключения (восстановление).
  • 8. Классификация исполнительных сэу.
  • 9. Классификация преобразовательных сэу.
  • 10. Простые и комбинированные преобразователи и их структурные схемы.
  • 17. Определение основных потерь в вентилях на низких частотах.
  • 11. Роль эвм, микропроцессорной техники в развитии сэу.
  • 12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
  • 13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
  • 14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
  • 15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
  • 16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
  • 18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
  • 20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
  • 23. Система параметров тиристора по току и напряжению.
  • 24. Система динамических параметров тиристора.
  • 21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
  • 34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
  • 25. Характеристики управляющего перехода тиристора и параметры цепи управления.
  • 26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
  • 27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
  • 29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
  • 28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
  • 33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
  • 30. Структура и вах тиристора-диода.
  • 32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
  • 36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
  • 38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
  • 37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
  • 39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
  • 41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
  • 42.Режимы работы спп в сэу и их характеристика.
  • 44. Исполнительные сэу, классификация, области использования.
  • 45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
  • 54. Преобразовательные сэу, классификация, области использования.
  • 46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
  • 51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
  • 52. Регулировочная характеристика последовательных шир, расчет основных элементов.
  • 53. Регулировочная характеристика параллельных шир, расчет основных элементов.
  • 55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
  • 56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 1. Схема однополупериодного выпрямления
  • 2. Двухполупериодная схема выпрямления с выводом нулевой точки
  • 3. Однофазная мостовая схема выпрямления
  • 57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
  • 61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
  • 66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
  • 67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
  • 68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
  • 40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
  • 72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.

    В настоящее время созданы силовые диоды на токи свыше 1000 А и напряжения свыше 1000 В.

    При последовательном и параллельном соединениях диодов из-за несовпадения их ВАХ возникают неравномерные распределения напряжений или токов между отдельными диодами. На рис. 1.3 представлены схемы: последовательного (рис. 1.3, а) и параллельного (рис; 1.3, 6) соединения двух диодов. Там же представлены прямые (рис. 1.3, г) и обратные (рис. 1.3, в) ветви ВАХ соединяемых диодов. Согласно приведенным ВАХ при последовательном соединении диодов, приложенное к ним обратное напряжение U R при одинаковых обратных токах I R распределяется между диодами неравномерно: к диоду VD1 прикладывается напряжение U R 1 , а к диоду VD 2 - напряжение U R 2 (рис. 1-3,в). При параллельном соединении диодов протекающий через них общий ток I F при одинаковых прямых падениях напряжения U F распределяется также неравномерно: через диод VD 1 протекает ток I F 1 , а чёрtp диод VD2 ток I F 2 (рис. 1.3,г). Для исключения выхода из строя диодов из-за перегрузки по току или перенапряжений принимают специальные меры по выравниванию указанных параметров между отдельными диодами. При последовательном соединении диодов для выравнивания напряжений обычно используются резисторы, включенные параллельно диодам, а при параллельном соединении - индуктивные делители различных типов.


    Рис. 1.3. Последовательное и параллельное соединение диодов

    20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.

    Стабилитрон (диод Зенера) - полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока). В основе работы стабилитрона лежат два механизма: Лавинный пробой p-n перехода

    Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе). Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом[источник не указан 304 дня], выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом[источник не указан 304 дня]. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения[источник не указан 321 день]. Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

    Виды стабилитронов: прецизионные - обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520); двусторонние - обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А); быстродействующие - имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).

    Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.

    Типовая схемавключения стабилитрона

    Обозначение стабилитрона на принципиальных схемах

    Обозначение двуханодного стабилитрона на принципиальных схемах

    Параметры. Напряжение стабилизации - значение напряжения на стабилитроне при прохождении заданного тока стабилизации. Пробивное напряжение диода, а значит, напряжение стабилизации стабилитрона зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Поэтому разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 В). Температурный коэффициент напряжения стабилизации - величина, определяемая отношением относительного изменения температуры окружающей среды при постоянном токе стабилизации. Значения этого параметра у различных стабилитронов различны. Коэффициент может иметь как положительные так и отрицательные значения для высоковольтных и низковольтных стабилитронов соответственно. Изменение знака соответствует напряжению стабилизации порядка 6В. Дифференциальное сопротивление - величина, определяемая отношением приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот. Максимально допустимая рассеиваемая мощность - максимальная постоянная или средняя мощность, рассеиваемая на стабилитроне, при которой обеспечивается заданная надёжность.

    Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

    Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, и т.п.

    Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

    Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

    Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

    Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

    Принцип работы стабилитрона

    Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2 , 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3 . Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины , протекающего через полупроводниковый прибор.

    Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

    Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

    Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

    Вольт-амперная характеристика стабилитрона

    Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом , а источник питания с данным полупроводниковым элементом называют опорным источником напряжения . Такой терминологий будем пользоваться и мы.

    На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3 . Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1 , то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2 . Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

    Встречное, параллельное, последовательное соединение стабилитронов

    Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

    Параллельное соединение применяется с целью повышения тока и мощности.

    Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

    В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

    Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

    Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

    Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

    Маркировка SMD стабилитронов

    Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

    Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

    Мощность рассеивания стабилитрона

    Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст , тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

    Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

    Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

    Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

    Если в обеих случаях мулитиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

    Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне

    остается практически постоянным, поэтому и напряжение на нагрузке постоянно U Н = U ст – const. При этом уравнение для всей цепи имеет вид: E = U ст + R ст (I ст – I Н).

    Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а R Н – const. Для поддержания режима стабилизации следует правильно выбрать R СТ. Обычно R СТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что E min  E  E max , то

    Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем U CT , а, следовательно, и на нагрузке остается практически неизменным.

    Все изменения напряжения поглощаются R CT , поэтому должно выполнится условие:

    Второй режим стабилизации: входное напряжение постоянно, а R Н изменяется в пределах от R Н min до R Н max , в этом случае:
    ,
    ;
    .

    Так как R CT постоянно, то падение напряжения на нем равное Е−U CT также постоянно, то и ток через R CT I CP +I Н CP должен быть постоянным. Это возможно, когда ток стабилизации I CP и I Н изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).

    Из приведенных выражений следует, что для стабилизации в более широком диапазоне изменений входного напряжения Е, R CT нужно увеличивать, а для стабилизации в режиме изменения тока нагрузки, R CT необходимо уменьшать (уменьшать R CT – не выгодно, тратится лишняя энергия источника).

    Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение R доб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки R CT должно быть постоянным.

    U Н =U CT ─I Н R доб

    Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).

    U CT =U CT 1 +U CT 2

    Для компенсации температурного дрейфа U CT последовательно со стабилитроном возможно включение термозависимого сопротивления R T , имеющее ТКR Т обратный по закону ТКU CT .

    Для стабилитронов с ТКU CT >0 в качестве R T можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.

    Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).

    1.10.2. Стабисторы

    ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.

    Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое r б и малое значение R диф. Слабая зависимость U ПР от I ПР на

    рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В. Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.