Контроллер pwm солнечный принципиальная схема. Контроллер заряда солнечной батареи

Контроллер pwm солнечный принципиальная схема. Контроллер заряда солнечной батареи

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

В наше прогрессивное время, когда технологии постоянно совершенствуются, а производственные мощности постоянно увеличиваются, для простого самодельщика становятся все более доступными материалы и компоненты, о которых раньше приходилось только мечтать. Одними из таких компонентов являются солнечные фотоэлектрические элементы. Все большее число доморощенных Кулибиных создают свои из фотоэлектрических элементов купленных по приемлемой цене на Ebay, в Dealextreme или других местах.

Но как извесно, введение в эксплуатацию нового технического устройства, такого как солнечная батарея, провоцирует на создание устройства управления этим полезным девайсом. Если раньше для этого применялись простейшие схемы с ограничивающими диодами или релейные, то сейчас, разрабатываются все более прогрессивные устройства. С одним из таких устройств,контроллеров заряда для солнечной батареи, изготовление которого вполне по силам даже начинающим, мы и предлагаем ознакомиться. Суть работы всех контроллеров заряда (как заводских так и самодельных) заключается в следующем: нагрузкой солнечной батареи является чаще всего АКБ, которая накапливает полученную энергию Солнца, а для того чтобы соблюсти все параметры заряда аккумулятора,не допустить его перезаряда (и таким образом продлить срок его службы) и утилизировать ""лишнюю"" энергию. Итак, рассмотрим схему контроллера заряда для солнечной батареи.

Оно предназначено для зарядки герметичного кислотно-свинцового (гелевого) аккумулятора на 12V от маломощной солнечной панели, с током отдачи до нескольких ампер. Последовательный защитный диод, который раньше устанавливался для предотвращения разряда аккумуляторов в темное время суток, здесь заменен полевым транзистором, который в свою очередь управляется компаратором.

Более качественный рисунокпечатной находится в архиве. Контроллер останавливает заряд аккумулятора, когда напряжение на нем достигает заданного предела и переключает панель на дополнительный потребитель (нагрузку)для утилизации лишней энергии. Когда же напряжение на аккумуляторе опустится ниже заданного предела, контроллер переключает солнечную панель с нагрузки на заряд АКБ. Основные характеристики схемы:

Напряжение заряда Vbat=13,8V (настраивается), измеряется при наличии тока заряда;
-Отключение нагрузки происходит когда Vbat мене 11V (настраивается), включение нагрузки когда Vbat=12,5V;
-Температурная компенсация режима заряда;
-Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;
-Падение напряжения на ключах менее 20mV при заряде током 0,5А.

Настраивать устройство на включение/отключение заряда лучше исходя из паспортных данных на применяемую батарею; зарядный ток ограничен только возможностями солнечной батареи - схема контроллера никак на него не влияет. Данное устройство эксплуатировалось автором в течении года. За это время никаких нареканий и нарушений в работе выявлено не было. На фото печатной платы устройства помимо разводки непосредственно под сам контроллер (справа) разведены еще места под 3 DC/DC конвертера на 3,6 и 9вольт выхода.

Фото готового устройства со всеми компонентами, включая аккумуляторы, контроллер, конверторы и дополнительный блок индикации и коммутации. Конструктор контроллера - Oscar den Uijl.

На этот раз я решил сделать автомат, который автоматически включает светодиодное освещение в садовой беседке. Поскольку поблизости нет розетки, а постоянное протягивание удлинителя достаточно утомительное занятие, я решил запитать светодиоды от аккумулятора с подзарядкой от солнечных элементов.

Ранее был описан очень похожий , который освещает стеклянную полку в шкафу. Используя этот драйвер, возникла бы проблема, поскольку для освещения беседки нам нужно больше света, чем для освещения стеклянной полки. Так же, применение более мощного источника света будет быстрее разряжать аккумулятор, который может выйти из строя в результате глубокой разрядки элементов в батарее.

Чтобы этого не допустить, я решил создать простой драйвер с защитой от слишком глубокого разряда батареи на основе . В свою очередь, солнечные элементы также служат в качестве датчика освещенности, что значительно упростило всю схему.

Печатная плата имеет размеры 40мм на 45мм. Кроме того, добавлены два монтажных отверстия. Все устройство питается от трех Ni-MH аккумуляторов (1,2В/1000мАч). Для зарядки используется солнечная батарея с номинальным напряжением 5 вольт и максимальным выходным током до 80 мА. Солнечная батарея заряжает аккумуляторы через выпрямительный диод D1. Схема не имеет защиты от перезаряда батареи из-за того, что в такой конфигурации перезарядка просто невозможна.

Полностью заряженный аккумулятор должен иметь напряжение около 4,2-4,35 В Солнечная батарея вырабатывает напряжение 5В, но происходит падение на выпрямительном диоде в районе 0,7 В, что дает нам напряжение 4,3 В. Транзистор Q1 отвечает за включение освещения в ночное время и отключение его днем. База этого транзистора подключена через резистор 2,2 кОм к положительному полюсу солнечной батареи.

Когда солнечная батарея не вырабатывает электроэнергию, или она слишком маленькая, транзистор Q1 заперт. Тогда ток с вывода («REF») стабилитрона TL431 будет течь только через резистор R4, который создает делитель напряжения вместе с резисторами R2 и R3. Транзистор Q2 управляет нагрузкой в виде светодиодов. Чтобы схема работала правильно, мы не можем игнорировать резистор R5, задачей которого является подтягивание базы транзистора Q2 к плюсу источника питания.

По расчетам для имеющегося напряжения выходит, что резистор должен иметь сопротивление 100 Ом. С таким сопротивлением схема переключается очень быстро. Но проблема состоит в том, что этот резистор имеет достаточно маленькое значение, и через него течет очень большой ток. Общий ток потребления составляет около 23 мА! Я решил этот резистор заменить на резистор большего значения. В итоге я поставил резистор номиналом 1 кОм. Теперь отключение нагрузки не такое быстрое, но ток потребления сократился до 8mA.

Конечно, текущее значения 8 мА потребляется только тогда, когда солнечная батарея находится в темном месте — то есть, только в ночное время, когда горят светодиоды. И это такой же максимальный ток (8 мА), который поступает от батареи при напряжении 4,2 В. Напряжение отключения нагрузки я поставил на 2,9 В. Предельное напряжение для одной ячейки 0,9 В, что при подключении последовательно трех дает нам 2,7 В, и следовательно, у нас есть еще в запасе 0,2 В.

Схема после отключения нагрузки (т.е. при 2,9 В и ниже), потребляет только 50 мкА. Такой же ток будет, когда солнечная батарея заряжает аккумуляторы. Устройство очень отзывчиво на свет, но не на столько, чтобы уличное освещение мешало бы определить сумерки. С момента обнаружения заката до включения светодиодов на 100% проходит примерно 2 мин.

Удалив из системы транзистор Q1, резистор R1 и выпрямительный диод D1 получаем простую схему защиты аккумулятора от глубокого разряда. Подобная схема может использоваться для отключения Li-Ion или Li-Pol аккумулятора от зарядки. Ее можно использовать, например, в фонарике. Существует также возможность создания подобной защиты и на другие напряжения, для этого нужно рассчитать делитель напряжения. Формулы и пример расчета есть

Переход на альтернативные источники энергии продолжается уже довольно много лет, охватывая разные сферы. Несмотря на привлекательность концепции получения бесплатной энергии, на практике ее реализовать непросто. Возникают и технические, и финансовые сложности. Тем не менее в случае небольших по объему проектов альтернативное энергоснабжение себя оправдывает. Например, контроллер для позволяет использовать бесплатное питание для электроприборов даже в домашних условиях. Данный компонент регулирует работу аккумулятора, позволяя оптимально расходовать генерируемый заряд.

Какие параметры контроллера нужно учитывать?

В первую очередь следует исходить из суммарной мощности и входного напряжения системы, под которую подбирается контроллер. То есть именно мощность батареи или комплекса элементов питания не должна превышать произведения напряжения системы на величину выходного тока управляющего устройства. Причем контроллер для подбирается из расчета напряжения в разряженном аккумуляторе. К тому же следует предусмотреть и 20-процентный запас для напряжения на случай повышенной солнечной активности.

Также контроллер рассчитывается в показателе соответствия входному напряжению. Эта величина строго регламентируется на те же случаи аномальной активности излучения. На рынке контроллер для солнечной батареи представлен в разных видах, каждый из которых предполагает свою специфику оценки описанных характеристик.

Особенности выбора контроллеров PWM

Выбор данного типа управляющего устройства отличается простым подходом - будущему пользователю нужно определиться только с оптимальными показателями тока короткого замыкания в используемом модуле. Также следует предусматривать некоторый запас. Например, если ток солнечного генератора мощностью 100 Вт стабильно функционирует при показателе в 6,7 А, то контроллер должен располагать номинальным значением тока порядка 7,5 А.

Иногда берется в расчет и ток разряда. Особенно его важно учитывать при эксплуатации контроллеров с функцией управления нагрузкой. В данном случае выбор контроллера для солнечной батареи делается с таким расчетом, чтобы ток разряда не превышал аналогичное номинальное значение в управляющем устройстве.

Особенности выбора контроллеров MPPT

Данный тип контроллеров подбирается по критерию мощности. Так, если максимальный ток устройства составляет 50 А и система оптимально функционирует с напряжением 48 В, то пиковая мощность контроллера составит около 2900 Вт с учетом добавки страхующего потенциала. И здесь важен еще один аспект. Дело в том, что напряжение солнечных генераторов может понижаться в случаях их разряда. Соответственно, и мощность может упасть на существенную долю процента. Но это не значит, что можно делать скидку и на показатели самого контроллера - его мощностный потенциал должен охватывать именно предельные значения.

Кроме того, в вопросе о том, как выбрать контроллер для солнечных батарей типа MPPT, следует учитывать и особенности излучаемой радиации. На поверхности земли интенсивность солнечного света добавляет еще 20% к мощности аккумуляторной инфраструктуры. Такие явления нельзя назвать правилом, но даже как случайность они должны предусматриваться в расчете мощности контроллера.

Как сделать котроллер самостоятельно?

Типовой вариант самодельного контроллера предполагает использование скромного набора элементов. Среди них будет транзистор, выдерживающий ток до 49 А, реле-регулятор от автомобиля, резистор на 120 кОм и диодный элемент. Далее реле подключается к аккумулятору, а затем провод по резистору проходит к затвору транзистора. В процессе работы реле-регулятора плюсовой сигнал должен отпирать затвор, и ток от модуля солнечного света будет проходить через лапки транзистора в аккумулятор.

Если делается универсальный контроллер для с расчетом на исключение самопроизвольного потребления накапливаемой энергии, то интеграция в систему диода будет обязательной. В ночное время он создаст для подсветку, исключая дополнительное потребление энергии модулем.

Можно ли обойтись без контроллера для солнечной батареи?

Перед тем как дать ответ на этот вопрос, нужно вспомнить, какова вообще функция контроллера в составе солнечного модуля. С его помощью владелец может автономно управлять процессом заряда аккумуляторного блока за счет энергии света. Если контроллера не будет, то процесс наполнения энергией может происходить вплоть до момента выкипания электролита. То есть совсем без средства управления взаимодействием солнечной панели и аккумулятора обойтись нельзя. Другое дело, что контроллер для солнечной батареи может быть заменен вольтметром. При обнаружении пиковых значений заряда и напряжения пользователь самостоятельно может остановить процесс путем отключения блока АКБ. Такой подход, конечно, неудобен по сравнению с автоматическим контролем, но в случае редкого использования системы и он себя может оправдать.

Заключение

Изготовлением солнечных контроллеров и других комплектующих для подобного рода модулей сегодня занимаются многие компании. Этот сегмент уже не рассматривается обособленным и специфическим. На рынке такие компоненты можно приобрести за 10-15 тыс. рублей, причем хорошего качества. Конечно, самодельный контроллер для солнечной батареи с применением бюджетных резисторов и деталей автомобильной электротехники обойдется в разы дешевле, но он едва ли сможет гарантировать должный уровень надежности. А момент стабильности работы и безопасности особенно важен в эксплуатации солнечных панелей, не говоря об аккумуляторе. В случае успешного оснащения солнечного модуля качественным контроллером владелец сможет рассчитывать на автоматическое накопление электроэнергии без необходимости вмешательства в процесс генерации.

Особую популярность в последнее время приобрели системы, функционирующие автономно, без подключения к электросети. Подобные устройства идеально подходят для работы в замкнутом режиме. Конструкции подобных систем довольно сложные и состоят из нескольких элементов, самым главным из которых является контроллер.

Особенности

Контроллеры заряда имеют несколько немаловажных особенностей. Наиболее важными являются функции защиты, которые служат для повышения степени надежности работы данного устройства.

Необходимо отметить наиболее распространенные в подобных конструкциях разновидности защит:

  • устройства оснащены надежной защитой от неправильного подсоединения полярности;
  • очень важно предотвратить вероятность коротких замыканий в нагрузке и на входе, поэтому производители обеспечивают контроллеры надежной защитой от возникновения подобных ситуаций;
  • немаловажной является защита устройства от молнии, а также различных перегревов;
  • конструкции контроллеров оснащаются специальной защитой от перенапряжений и разрядки аккумулятора в ночное время суток.



Дополнительно устройство оснащается разнообразными электронными предохранителями и специальными информационными дисплеями. Монитор позволяет узнать необходимую информацию о состоянии аккумулятора и всей системы.

Помимо этого, на экране отображается множество другой немаловажной информации: напряжение аккумуляторной батареи, степень заряда и многое другое.

В конструкцию многих моделей контроллеров входят специальные таймеры, благодаря которым активируется ночной режим работы прибора.

Кроме того, существуют более сложные модели подобных устройств, способные одновременно управлять работой двух независимых друг от друга батарей. В наименовании подобных приборов присутствует приставка Duo.



Необходимо отметить современные модели приборов, которые способны сбрасывать лишнюю энергию на ТЭНы.

Виды

Существует несколько типов контроллеров для заряда солнечных батарей. Наиболее простым и доступным по стоимости прибором является On/Off.

Основным предназначением и преимуществом данного вида приборов является своевременное отключение подачи заряда на аккумулятор. Это свойство аппарата немаловажно: во время достижения оптимального напряжения оно помогает избежать перегревания прибора. При этом обязательно следует упомянуть о недостатке подобного вида устройств – быстрое отключение. После того как будет достигнут максимальный ток, нужно в течение примерно двух часов поддержать процесс заряда, однако данный прибор отключает его сразу. Степень заряда аккумулятора в этом случае будет порядка 70 процентов, что значительно ниже необходимого значения. Этот показатель оказывает негативное влияние на работу аккумуляторной батареи.



Второй тип контроллеров для заряда солнечной батареи – электронный прибор PWM. Выпуск подобной конструкции был налажен сравнительно давно. В основу работы устройства заложены специальные алгоритмы широтно-импульсной модуляции. Несмотря на это, подобные приборы достаточно эффективны. PWM-устройства являются оптимальным вариантом для использования в бытовых условиях.

Более современное электронное устройство – МРРТ. Прибор оснащен новейшими технологиями, направленными на отслеживание максимальной степени мощности. Это в несколько раз увеличивает эффективности и функциональность данного устройства. Однако, несмотря на это, необходимо отметить, что при выборе устройства для использования в бытовых условиях следует выбирать прибор из серии PWM. Это обусловлено высокой стоимостью приборов из серии МРРТ, а также сложной настройкой. Подобные устройства являются оптимальным вариантом для применения в системах масштабной солнечной энергетики.



Если вы хотите подобрать гибридный вариант, тогда, прежде всего, необходимо понять, как микроконтроллер работает (принцип работы и ШИМ).

Как выбрать

Выбирая подходящий контроллер для заряда солнечной батареи, необходимо обратить особое внимание на несколько очень важных критериев.

На первом месте стоит входящее напряжение. Максимальное значение данного показателя должно соответствовать определенным нормам. В конструкциях подобных устройств иногда используются несколько батарей. Поэтому напряжение на схему прибора идет одновременно от всех батарей, соединенных различными способами. Чтобы прибор правильно функционировал, необходимо определенное напряжение, показатели которого не должны превышать предусмотренные производителем нормы.




Для расчета значения мощности за основу берется показатель напряжения при разряженных аккумуляторах аппарата. При этом необходимо перемножить показатели выходного тока и напряжение, которое вырабатывается солнечной батареей. После этого следует добавить к полученному результату 20 процентов на резерв.

Еще одним важным критерием при выборе контроллера является вид нагрузки. Не следует использовать устройство для подключения различных бытовых приборов. Это приведет к выводу контроллера из строя, что обусловлено использованием в конструкции прибора различных технологий, которые учитывают всю нагрузку, заложенную в свойствах аккумулятора. Чтобы избежать возникновения подобных ситуаций, необходимо использовать устройство строго по назначению.




Схема установки

Вы можете сделать самодельный вариант своими руками и настроить его, если будете учитывать все наши рекомендации.

Следует отметить, что при подключении каждого типа подобных приборов необходимо использовать максимально соответствующий вид солнечных панелей. Например, при использовании устройства, рассчитанного на входное напряжение порядка 100 вольт, следует воспользоваться солнечными панелями, у которых подобный показатель на выходе соответствует данному значению.


Прежде чем приступить к подключению прибора, следует определиться с наиболее подходящим местом для его установки. Оптимальным решением данного вопроса является сухое, хорошо проветриваемое помещение. Категорически не рекомендуется располагать рядом с аппаратом легковоспламеняющиеся материалы. Помимо этого, категорически недопустимо расположение устройства очень близко к различным источникам вибрации, влажности, а также разнообразным обогревателям и печам. Место для размещения аппарата должно быть надежно защищено от различных атмосферных осадков и прямых солнечных лучей.


Последовательность подключения устройств PWM

Чтобы добиться максимального эффекта от использования подобного устройства, необходимо точно следовать инструкции, а также соблюдать определенную последовательность при подключении аппарата. Процесс подсоединения приборов PWM и различных периферийных устройств не вызовет больших затруднений – справиться с данной задачей сможет любой человек.



Каждая конструкция оснащена специальными маркированными клеммами.

Подключение периферийных устройств необходимо осуществлять в точном соответствии с обозначениями на контактных клеммах:

  • необходимо соединить аккумулятор и аккумуляторную батарею при помощи специального провода и клеммы, внимательно соблюдая полярность;
  • к определенному положительному проводу нужно подсоединить предохранитель, предназначенный для защиты прибора;
  • на соответствующих контактах контроллера следует зафиксировать специальные проводники, выходящие от батареи солнечных панелей, при этом также нужно тщательно соблюдать полярность;
  • следует подсоединить к определенным выходам аппарата специальную лампу для контроля соответствующего напряжения.


Не следует нарушать указанную последовательность. Например, категорически не рекомендуется подсоединять к контроллеру при отключенном аккумуляторе солнечные панели – это может привести к поломке аппарата. Инвертор конструкции нужно соединять с аккумуляторной батареей при помощи специальных клемм.

Порядок подключения приборов MPPT

Общие правила подключения этого типа аппаратов практически идентичны монтажу других видов приборов. Однако технология установки немного отличается, так как контроллеры MPPT относятся к более мощным устройствам.

Для конструкций, рассчитанных на высокую мощность, для соединения силовых цепей необходимо использовать электрокабели с большим сечением.

Соединительные электрокабели обязательно должны быть оснащены специальными наконечниками , выполненными из меди, которые необходимо предварительно обжать с помощью определенного инструмента. Отрицательные клеммы солнечной панели и аккумулятора следует оснастить специальными переходниками с предохранителями и выключателями. Благодаря подобному оснащению конструкции прибора можно добиться значительного сокращения потери энергии и гарантированной максимально безопасной эксплуатации конструкции.


Предварительно перед подключением прибора обязательно следует убедиться, что напряжение на клеммах соответствует либо имеет значение меньше допустимой нормы, которая необходима для подачи на вход контроллера.

Подсоединение периферии к аппарату MTTP:

  • предварительно следует отключить прибор и аккумулятор при помощи специальных выключателей;
  • необходимо демонтировать специальные предохранители на солнечной панели и аккумуляторе;
  • нужно подсоединить при помощи электрокабеля и клемм аккумулятор и контроллер;
  • подключить с помощью специального провода и клемм солнечную панель с аппаратом (данные элементы обозначены соответствующими знаками);
  • соединить с помощью электрокабеля определенную клемму заземления с шиной «земли»;
  • установить на конструкции специальный датчик, определяющий температуру.

Похожие публикации

Искусственный камень «Камелот Камень облицовка фасада под кирпич камелот
Дюбель для утеплителя: характеристики, особенности и методы монтажа Дюбель зонт для теплоизоляции в пустотелый кирпич
Разновидности дюбелей для теплоизоляции поверхностей минеральной ватой и пенополистиролом Грибочки для крепления утеплителя
Фонарь из тыквы на хэллоуин своими руками
Черно-белая гостиная (50 фото): современные интерьеры с яркими акцентами
Черно–белый интерьер гостиной (30 фото)
Схема подключения люминесцентных ламп к балласту Для чего нужен балласт для люминесцентных ламп
Пайка алюминия и других материалов: флюсы и припои для пайки
Рация своими руками: простые модели и схемы
Какой наполнитель для подушек самый лучший: обзор материалов, рекомендации по выбору Какой наполнитель для подушек хороший